## **Environmental Test**

### **TEST UNIT AND EQUIPMENT:**

GU128x32D-7806A. #804167 was tested between 19-May and 21-May, 2008.

Weiss WKL 100 Environmental Chamber serial 2200299200 calibrated 14-Aug-2007. Shaffner NSG435 ESD simulator PA0138 uncalibrated. Agilent E4402B spectrum analyser PA0193 calibrated 9-Nov-2007.

### **OPERATING CONDITION:**

RF emission and ESD: Vcc = 5V, GND = 0V, module operating in self-test mode.

Temperature test: Vcc = 5.25V and 4.75V, module operating in self-test mode.

### **TEMPERATURE RANGE:**

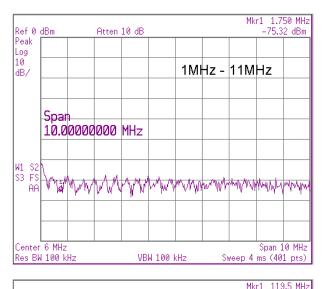
The module was brought to temperature in the Weiss-Technik chamber in the sequence, and for the durations shown. Module was powered on in self-test mode, and visual quality of display observed.

| Temp | Duration | Observation   |  |  |  |  |  |
|------|----------|---------------|--|--|--|--|--|
| -40C | 2 hours  | Off, storage  |  |  |  |  |  |
| -40C | 1 hour   | Operating, OK |  |  |  |  |  |
| +85C | 18 hours | Off, storage  |  |  |  |  |  |
| +85C | 1 hour   | Operating,OK  |  |  |  |  |  |

#### ELECTRO-STATIC DISCHARGE (Method IEC 6100-4-2):

The module was powered up in self-test mode on the test table. There it was exposed to contact and air discharges applied to the ribbon cable across the module face, the horizontal conductive plane under the module, and the vertical conductive plane.

| Observation                         | Contact Discharge | Air Discharge |
|-------------------------------------|-------------------|---------------|
| Lowest voltage discharged           | 1kV               | 6kV           |
| Temporary spurious ON/OFF of pixels | 3kV               | 10kV          |
| Module reset or lock-up             | None              | None          |
| Permanent damage                    | None              | None          |
| Highest voltage discharged          | 9kV               | 16kV          |


### CONDUCTED RF EMISSION TEST:

The 50-ohm input of the Agilent E4402B spectrum analyser was AC-coupled to the 5V supply of the module. While the module performed self-test, the spectra shown overleaf were taken:

| Start   | Stop     | Spectra         | Significant UUT peaks |
|---------|----------|-----------------|-----------------------|
| 50 kHz  | 2050 kHz | UUT             | -28dBm @200kHz        |
| 1 MHz   | 11 MHz   | UUT             | None                  |
| 8 MHz   | 88 MHz   | UUT             | -52dBm @32MHz         |
| 80 MHz  | 280 MHz  | UUT, background | None                  |
| 0.2 GHz | 3 GHz    | UUT             | None                  |

## **Environmental Test**

#### Mkr1 200 kHz Ref 0 dBm Atten 10 dB -28.65 dBm Peak Log 10 50kHz - 2050kHz dB/ Marker 200.000 kHz -28.65 dBm W1 S2 S3 FS AA A WW WW W W WWW WWW HM. Center 1.05 MHz Res <u>BW 10</u> kHz Span 2 MHz VBW 10 kHz Sweep 25.77 ms (401 pts)



| Ref 0            | dBm      |             | Atten |         | Mkr1 32.0 MHz<br>-52.86 dBm |      |        |         |       |                  |
|------------------|----------|-------------|-------|---------|-----------------------------|------|--------|---------|-------|------------------|
| Peak<br>Log      |          |             |       |         |                             |      |        |         |       |                  |
| 10<br>dB/        |          |             |       |         |                             | 8MF  | ۱z –   | 88M     | Ηz    |                  |
|                  |          |             |       |         |                             |      |        |         |       |                  |
|                  | Mark     |             |       |         |                             |      |        |         |       |                  |
|                  |          |             | 10 MH | z       |                             |      |        |         |       |                  |
|                  |          | 86 d<br>∿₩₩ | L., 1 |         |                             |      |        |         |       | <b>L</b> 1       |
| W1 S2<br>S3 FS   | ייראאייי | Andres      | " WW  | Vinitia | mala                        | WWWW | nyyumu | Marina  | Mhull | ninininini       |
| ÂÂ               |          |             |       |         |                             |      |        |         |       |                  |
|                  |          |             |       |         |                             |      |        |         |       |                  |
|                  |          |             |       |         |                             |      |        |         |       |                  |
| Center<br>Res Bk |          |             |       | VI      | BW 1 M                      | Hz   | S      | Sweep 4 |       | 30 MHz<br>1 pts) |

| BW       | 1 MHz        |           |           | V                   | BW 1 MI | łz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SI  | veep 4<br>Mk |       | 1 pts)<br>40 GHz |
|----------|--------------|-----------|-----------|---------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-------|------------------|
|          | dBm          |           | Atten     | 10 dB               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |              |       | 8 dBm            |
| k<br>/   |              |           |           |                     |         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GHz | - 3G         | Hz    |                  |
|          | C            |           |           |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |              |       |                  |
|          | Spar<br>2.80 | 1<br>0000 | 000       | GHz                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |              |       |                  |
| S2<br>FS | Mysontwoor   | Analony   | , syapily | 1<br>Rayalyung-Nya, |         | et was a start of the start of | m   | quarment     | white | Mypun            |
| AA<br>AA |              |           |           |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |              |       |                  |
|          |              |           |           |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |              |       |                  |

Span 2.8 GHz

Sweep 4.667 ms (401 pts)

R P Li 1

W

Center 1.6 GHz

Res BW 3 MHz

| Ref Ø<br>Peak        | dBm               |       | Atten 10 dB |        |         | Mkr1 119.5 MHZ<br>-64.81 dBm |        |       |                   |           |
|----------------------|-------------------|-------|-------------|--------|---------|------------------------------|--------|-------|-------------------|-----------|
| Log<br>10<br>dB/     |                   |       |             |        |         | 80M                          | Hz -   | 280   | MHz               |           |
|                      | Spar<br>200.      | 0000  | 000         | MHz    |         |                              |        |       |                   |           |
| W1 S2<br>S3 FS<br>AA |                   | mphys | \$n.h.n.w   | Knythr | nvundun | Nurin                        | ~~~Jar | white | wr/W4             | hylimpinn |
|                      |                   |       |             |        |         |                              |        |       |                   |           |
|                      | -180 M<br>4 1 MHz |       |             | VI     | BW 1 MH | Ηz                           | Sr     |       | Span 20<br>ms (40 |           |

CONTACT

Noritake Sales Office Tel Nos Nagoya Japan: +81 (0)52-561-9867 Canada: +1-416-291-2946 Chicago USA: +1-847-439-9020 Munchen (D): +49 (0)89-3214-290 Itron UK: +44 (0)1493 601144 Rest Europe: +49 (0)61-0520-9220 www.noritake-itron.com

Subject to change without notice. IUK Doc Ref: 37252 Iss:1 2June08

### NORITAKE ITRON VFD MODULES

VBW 3 MHz

### GU128x32D-7806A

# GU128x32D-7806A