
2012 iDev Programming Guide Itron

Austin Barlis

1

IDEV PROGRAMMING GUIDE
Written by Austin Barlis

(INCOMPLETE) Revision Date: 21/09/2012 Revised by: Austin Barlis

2012 iDev Programming Guide Itron

Austin Barlis

2

TABLE OF CONTENTS
Introduction .. 6

The iDev Language .. 6

Getting Started ... 6

1. Starting an iDev Project ... 7

1.1. What you need? .. 7

1.2. Main File .. 7

1.3. The iDev Format and Command Structure .. 7

1.4. Including Sub files .. 8

1.4.1. Include Example .. 8

1.4.2. Library Example (Images) .. 10

1.4.3. Library Example (Fonts and Sound files) ... 12

1.5. Setup (System) ... 14

1.6. RESET ... 15

2. Creating Pages ... 16

2.1. Setting up Page (Page Style) .. 17

2.2. Positioning Components ... 19

2.3. Defining Components .. 20

2.3.1. Text Style ... 20

2.3.2. Text Component .. 22

2.3.3. Text Manipulation ... 24

2.3.4. Image Style .. 28

2.3.5. Image Component ... 30

2.3.6. Image Manipulation .. 33

2.3.7. Draw Style ... 35

2.3.8. Draw Component .. 37

2.3.9. Draw Manipulation ... 39

2.3.10. Key Style .. 41

2.3.11. Key Component ... 42

2.3.12. Key Manipulation .. 46

2.4. Updating Components ... 49

2.5. Page Components Manipulation ... 52

2.5.1. SHOW .. 52

2.5.2. HIDE ... 53

2.5.3. DEL .. 53

2012 iDev Programming Guide Itron

Austin Barlis

3

2.5.4. Update Style – LOAD ... 54

2.6. Functions ... 57

2.7. Loop ... 58

2.8. Navigation between pages (linking) .. 59

3. Manipulating Data ... 63

3.1. Data Storage .. 63

3.1.1. Variable Data Style .. 63

3.1.2. Declaring Variables .. 65

3.1.3. Text Variable Update – LOAD .. 66

3.1.4. Integer/Float Variable – LOAD .. 70

3.1.5. Pointer ... 73

3.1.6. Array .. 78

3.2. Formatting Data .. 98

3.3. Moving and Updating Data – LOAD ... 103

3.4. Comparing Data or Creating Conditions – IF ... 105

3.5. Case – Switch/Select .. 113

3.6. Calculation ... 120

3.6.1. Arithmetic ... 120

3.6.2. Text Strings .. 126

3.6.3. Data Buffers .. 136

3.6.4. Other Calculation methods (Incomplete) ... 139

3.7. Counters .. 146

3.7.1. I/O Counters .. 146

3.7.2. Runtime Counter ... 147

3.8. Timers .. 149

3.9. Delay – WAIT ... 150

4. Interfaces and Communication .. 151

4.1. RS232 Interface ... 152

4.2. RS422/RS485 Interface .. 159

4.3. CMOS Asynchronous Interface (AS1, AS2, DBG) ... 167

4.4. SPI (Master and Slave) Interface ... 177

4.5. I2C/TWI (Master and Slave) Interface ... 186

4.6. Digital Input/Output (I/O) Interface & External Keyboard .. 194

4.7. Interrupts ... 203

4.8. Handling Data in Interfaces – LOAD .. 207

4.9. Controlling I/O Interface and External Keyboard (Incomplete) ... 208

2012 iDev Programming Guide Itron

Austin Barlis

4

5. Controlling PWM, ADC and Piezo Buzzer ... 213

5.1. PWM .. 213

5.2. ADC .. 217

5.3. Piezo .. 220

6. Real Time Support (RTC and RTA) .. 222

6.1. Real Time Clock (RTC) .. 222

6.2. Real Time Clock Alarm (RTA) ... 227

7. File handling for SD/micro SD Card and NAND – FILE (Incomplete) .. 229

7.1. APPEND.. 230

7.2. CLOSE ... 231

7.3. COPY .. 231

7.4. DATE .. 232

7.5. DELETE ... 232

7.6. EXISTS .. 233

7.7. GETPOS .. 233

7.8. MKFN ... 234

7.9. OPEN .. 234

7.10. READ .. 235

7.11. READALL .. 236

7.12. RENAME ... 237

7.13. SAVE ... 237

7.14. SETPOS ... 238

7.15. SIZE .. 239

7.16. WRITE .. 239

7.17. WRITEALL ... 240

7.18. File Object Variable ... 241

7.19. File Result .. 241

7.20. File and Directory NAmes .. 242

7.21. Potential Future Commands (not yet supported) ... 243

7.22. File Examples ... 243

8. File Transfer and Memory .. 245

8.1. Transfer via micro SD Card .. 245

8.2. Transfer via SD Card or micro SD Card Adaptor .. 246

8.3. Transfer to NAND – FPROG & LOAD .. 248

8.4. Transfer via USB... 253

8.5. EEPROM ... 257

2012 iDev Programming Guide Itron

Austin Barlis

5

9. Example Codes (Incomplete) ... 258

10. Glossary ... 259

11. Appendix .. 266

12. Accessories (Incomplete) ... 266

12.1. CANBUS Adaptor ... 266

12.2. Capacitive Touch ... 266

12.3. Rotary Encoder .. 266

12.4. Battery Connector ... 266

12.5. External Soundcard.. 266

13. Command Format Archive (Incomplete) ... 267

14. Image Files Used in Guide ... 276

2012 iDev Programming Guide Itron

Austin Barlis

6

INTRODUCTION

THE IDEV LANGUAGE
iDev is a language developed by Noritake-Itron UK Engineers to manipulate and control the Itron Smart

TFT displays. The itron SMART TFT displays simplifies the application of TFT technology into different

products. The itron SMART TFT displays have a built-in microcontroller and interfaces which provides

extensive functionality. The iDev language has some aspects present on multiple pre-existing languages

namely: C, HTML and Basic. This won’t mean anything for inexperienced developers but this gives

experienced developers an idea on the layout and structure of the iDev language. The iDev language

achieves simplification of programming by creating the least amount of commands possible but still utilise

the full capability of the module.

 GETTING STARTED
This guide is created to educate beginners in iDev development. If you do not have any experience in

programming before, there is no need to worry because this guide is aimed for complete beginners in

programming. As a developer myself, I have read different beginner’s guides and tutorials before and I

have always thought that there are always some parts missing that I don’t fully comprehend after

finishing the whole guide. This guide has a glossary page that explains advanced terms used in this guide.

If you are unsure on what a specific term means then go to the glossary page of this guide for a full

explanation of the term concerned. I will reassure you that after completion of this guide you will know

everything that is needed to know about iDev programming.

2012 iDev Programming Guide Itron

Austin Barlis

7

1. STARTING AN IDEV PROJECT

1.1. WHAT YOU NEED?
An itron SMART TFT module is not necessarily needed but having one would greatly enhance

your learning experience because connections from the module via the interface to an

external module such as a sensor would be possible. If you have an itron SMART TFT module,

then downloading the iDevTFT development software (link here) is not needed to observe

the code you created because it can be uploaded on the device via a micro SD card. Any text

editor can be used to create the program for the itron SMART TFT module. However,

downloading the iDevTFT software is greatly recommended because it has features that

would greatly benefit not only beginners in the iDev language but also others who are

experienced enough.

1.2. MAIN FILE
Projects are uploaded on the TFT module by the use of iDev nomenclature/classification.

When the TFT module is powered, it looks for a specific file name and type on which the

program/code is written on to. The filename structure is based on the device’s product code

followed by a suffix of .mnu which sets the file as the main menu file. The product code of a

typical 4.3” TFT module is TU480x272… Names of main menu files are based on the TFT

module’s product code; hence the menu file for a 4.3” TFT module is called TU480a.mnu eg.

A 7” TFT module’s part number is normally TU800x480… so the menu file would be

TU800a.mnu and so on. Menu files can be created on any text editor program so a Microsoft

equivalent would be Notepad. From here on, the “TU480a.mnu” file will be addressed as the

main menu file.

1.3. THE IDEV FORMAT AND COMMAND STRUCTURE
In the course of this guide, various iDev commands will be used to perform certain tasks that

a developer would want to do. Also different developers have different writing styles in

software development. There are a few things that an iDev developer should remember

when creating iDev projects:

a) library file names, page names, page component names, style names,

function names and variable names are case sensitive, however iDev

commands, setup parameters and style parameters are case

insensitive – it does not matter whether the commands and

parameters are all in upper case or lower case or a mixture of both

b) names for library files, pages, page components, styles, functions and

variables must start with _ or letter – there is however, naming

conventions that most developers use to help for identification and

better referencing in any languages which can be applied in iDev

c) iDev uses semicolons as a termination character for each command

and style/setup parameters – the use of semicolons and brackets in

any programming languages is always abundant and important

because sometimes one missing semicolon or bracket can be the cause

of why an iDev project is not working properly

http://www.noritake-itron.com/EPages/Log.asp?PCode=tft/iDevTFT/application/userload&PType=htm

2012 iDev Programming Guide Itron

Austin Barlis

8

d) adding comments is important – comments are added in iDev by

adding “//” before the comment in the menu file, all example codes in

this guide will be commented for better assistance.

e) text data, calculation methods and file locations should be enclosed

in " – e.g VAR(mytext, "Hello",TXT);

The use of semicolons and brackets can be compared to using commas, full stops and

exclamation mark in the English language, the use of punctuation marks in English language

completes the grammar of a sentence much like in iDev, the use of semicolons and brackets

completes the format of the code.

1.4. INCLUDING SUB FILES
Menu files are normally created to organise code created by the developer on iDev. Instead

of putting the entire developer’s code in one big main menu file, it can be divided into

different sub files. Typically menu files for pages, functions, variables and styles are created.

Developer specified images and fonts are added as well. As the TFT module looks for the

main file when turned on, at least one “include” instance should be used in the main menu

file. When adding images, fonts or sound files to the project however, the LIB command is

used. The current system does not yet recognise directory structures in the SDHC card so it is

important to remember that all active files used for the iDev project have to be placed in the

root folder of the SDHC card.

1.4.1. INCLUDE EXAMPLE
In this example, menu files stated will be added to the iDev Project.

Main menu file for 4.3” module: TU480a.mnu

Other menu files to be added: Pages.mnu

 Funcs.mnu

 Vars.mnu

 Styles.mnu

INC command format:

For single files

INC("Source/Filename") ;

For multiple files

INC("Source/Filename1", "Source/Filename2", "Source/Filename3"…);

If the developer wants to add the other menu files to the main menu file then the

following lines of code have to be added:

//FILENAME: TU480a.mnu

INC("SDHC/Pages.mnu"); //add pages menu file to the main menu file

INC("SDHC/Functions.mnu"); //add functions menu file to the main menu file

INC("SDHC/Variables.mnu"); //add variables menu file to the main menu file

INC("SDHC/Styles.mnu"); //add styles menu file to the main menu file

//OR

INC("SDHC/Pages.mnu","SDHC/Funcs.mnu","SDHC/Vars.mnu", "SDHC/Styles.mnu");

//add all the other menu files in one line

2012 iDev Programming Guide Itron

Austin Barlis

9

Fig.1.1 Adding the other menu files to the main menu file

In Fig 1.1, the source parameter is set to “SDHC” because the menu files that are

going to be included are stored on the SD card. In some cases when the menu files

being added are stored in the NAND flash then the source parameter is changed to

“NAND”.

Fig.1.2. Visual diagram to show file how files are included in an iDev Project

Another way of including files is by nesting them. As stated before, at least one

include instance in the main menu file has to be done. In this example, the

developer wants to add Pages.mnu and Vars.mnu in the main menu file. Then

include the Funcs.mnu file to Pages.mnu and the Styles.mnu to Vars.mnu. The

following lines of code have to be added to the appropriate menu files.

Fig.1.3. Pages.mnu and Variables.mnu files are added to the main menu file

Fig.1.4. Funcs.mnu file is added to the Pages.mnu file

Fig.1.5. Styles.mnu file is added to the Vars.mnu file

//FILENAME: TU480a.mnu

INC("SDHC/Pages.mnu"); //add pages menu file to the main menu file

INC("SDHC/Vars.mnu"); //add variables menu file to the main menu file

//OR

INC("SDHC/Pages.mnu","SDHC/Vars.mnu");

//add both pages and variables menu file in one line

//FILENAME: Pages.mnu

INC("SDHC/Funcs.mnu"); //add the Functions.mnu file to Pages.mnu file

//FILENAME: Vars.mnu

INC("SDHC/Styles.mnu"); //add the Styles.mnu file to Variables.mnu file

TU480a.mnu
(main menu file)

Styles.mnu Vars.mnu Funcs.mnu Pages.mnu

2012 iDev Programming Guide Itron

Austin Barlis

10

Fig.1.6. Visual diagram to show file how menu files are nested to each other in an

iDev Project

In this second example the menu files are nested on 2 levels i.e. Vars.mnu is

included in TU480a.mnu (1
st

 level) and Styles.mnu is included in Vars.mnu (2
nd

level). The iDev language allows up to 7 levels of include instances.

1.4.2. LIBRARY EXAMPLE (IMAGES)
Developer images can be stored to the project library by using the LIB command.

The iDev language supports BMP and JPG image file formats.

LIB command format for images:

LIB(Library image name, "Source/Filename");

In this example, 3 images will be added to the project library:

Fig.1.7. Adding image files to project library using LIB command

In Fig 1.7 the BMP and JPG image file format does not support transparency; if the

developer needs transparency in the image being used, and then additional

parameters are added to the LIB command format as shown below:

LIB command format for transparency:

LIB(Library image name, "Source/Filename?back=Colour in HEX");

The example below would use the same images in Fig 1.7 and set specified colours

to be transparent.

//FILENAME: TU480a.mnu

LIB(myimage1,"SDHC/image1.bmp"); //add image1.bmp to project library

LIB(myimage2,"SDHC/image2.bmp"); //add image2.bmp to project library

LIB(myimage3,"SDHC/image3.bmp"); //add image3.bmp to project library

TU480a.mnu
(main menu file)

Styles.mnu Funcs.mnu

Pages.mnu Vars.mnu

2012 iDev Programming Guide Itron

Austin Barlis

11

Fig.1.8. Adding image files to project library using LIB command and setting the

image’s transparency

In Fig 1.8, transparencies are set for the three images with different colours. For

myimage1 the transparency parameter is set to \\FFFFFF in HEX code which refers

to the white pixel colour. So when the image called image1.bmp is used in the iDev

project concerned all the white pixels are set to be transparent. For myimage2 and

myimage3, similar effect occurs but \\FF0000 (red) is set to be transparent in

image.2bmp and \\FFFF00 (yellow) is set to be transparent in image3.bmp. In the

examples given above, BMP file formats are used rather than JPG. Although

transparency can be applied to JPG images as well, it is highly recommended to use

BMP file formats when applicable. The JPEG file format uses lossy compression to

significantly reduce the image’s file size; this means that there is a reduction in the

original image’s quality. Using JPEG images may not provide accurate transparency

capability and is only suitable for backgrounds. The advantages of using JPEG files

are: it decreases loading time and smaller file size.

If the developer requires rotation for the image stored in the library, the rotate

parameter is added:

LIB command format for rotation:

LIB(Library image name, "Source/Filename?rotate=0°, 90°, 180° or 270°");

The example below would use the same images in Fig 1.7

Fig. 1.9 Adding image files to project library using LIB command and setting the

image’s rotation

So from Fig 1.9, the library image myimage1 is set to have a rotation of 90°. In the

iDev project, when myimage1 is used the image is rotated by 90°. This is the same

for the library image myimage2 but instead a rotation of 270° is used. Another

transformation that can be done to library images is scaling. The image stored in the

library can be scaled higher or lower. The scale parameter is added:

LIB command format for scaling:

LIB(Library image name, "Source/Filename?scale=value");

//FILENAME: TU480a.mnu

LIB(mylibimage1,"SDHC/image1.bmp?back=\\FFFFFF");

//add image1.bmp to library and set the HEX colour FFFFFF to be transparent

LIB(mylibimage2,"SDHC/image2.bmp?back=\\FF0000");

//add image2.bmp to library and set the HEX colour FF0000 to be transparent

LIB(mylibimage3,"SDHC/image3.bmp?back=\\FFFF00");

//add image3.bmp to library and set the HEX colour FFFF00 to be transparent

//FILENAME: TU480a.mnu

LIB(mylibimage1,"SDHC/image1.bmp?rotate=90");

//add image1.bmp to the library and set the image to rotate by 90 degrees

LIB(mylibimage2,"SDHC/image2.bmp?rotate=270");

//add image2.bmp to the library and set the image to rotate by 270 degrees

2012 iDev Programming Guide Itron

Austin Barlis

12

Scale Value Scale Definition

integer value set the scaling of the library image

fit set a non-proportional fit into the height
and width specified, otherwise the size of
screen is assumed

min set a proportional fit into the width and
height specified by developer

max set a proportional fit into high value of
width and height specified by developer
(not implemented)

FitX set a fit to width specified by developer
(not implemented)

FitY set a fit to height specified by developer
(not implemented)

Fig. 1.10 Table to explain what each scale value parameter means

The example below uses the same images in Fig 1.7

Fig. 1.11 Adding image files to project library using LIB command and setting the

image’s scaling

Fig 1.11 shows how the scaling of the library image myimage1 is increased to 200%.

The library image myimage2 is set to have a proportional fit into a 220 by 90

dimension. There is no absolute limit set when scaling images. When multiple

transformations are required, then a different format has to be used:

LIB command format for multiple transformations:

LIB(Library image name, "Source/Filename?transformation1&transformation2..");

The example below uses the same image in Fig 1.7

Fig. 1.12 Adding image files to project library using LIB command and applying

multiple transformations to each image

All the transformations can be applied at once using the LIB command. Multiple

transformations are performed with the use of “&” as evident in Fig 1.12.

1.4.3. LIBRARY EXAMPLE (FONTS AND SOUND FILES)
Adding developer fonts and sound files is done in a similar way as to add images.

The iDev language supports FNT font file format and WAV sound file format.

Although there is no size limit when adding sound files to the project library, it is

//FILENAME: TU480a.mnu

LIB(mylibimage1,"SDHC/image1.bmp?scale=200");

//

LIB(mylibimage2,"SDHC/image2.bmp?scale=min&width=220&height=90");

//

//FILENAME: TU480a.mnu

LIB(mylibimage1,"SDHC/image1.bmp?scale=200&back=\\FF0000");

//

LIB(mylibimage2,"SDHC/image2.bmp?scale=min&rotate=180&back=\\FFFFFF");

//

2012 iDev Programming Guide Itron

Austin Barlis

13

highly recommended to use smaller sound files. The use of larger sound files

significantly increases the loading time of the TFT module when it is powered on i.e.

boot-up time is increased. If a large sound file is required however, quicker start-up

of the device can be achieved by only loading the sound file on demand and setting

a flag to indicate if they have been loaded.

LIB command format:

LIB(Library font/sound name, "Source/Filename");

The example below is showing how to add 2 font files and a sound file.

Fig 1.13 Adding 2 font files and a sound file to the project library

Adding multiple font files may sometimes require mapping of hex codes to specific

characters to display appropriate characters. This is done by adding another

parameter to the LIB command format when adding a font file. The example below

adds 2 font files with different mapped starting HEX values.

LIB command format for mapping fonts:

LIB(Library font name, "Source/Filename?start=HEX value to be mapped");

Fig 1.14 Adding 2 font files with different mapped starting values

By mapping the correct values for multiple font files, the developer can then use

multiple fonts in the same text STYLE which will be explained further in the text part

of this guide.

//FILENAME: TU480a.mnu

LIB(mylibfontasc24,"SDHC/asc24.fnt"); //

LIB(mylibfontasc24b,"SDHC/asc24b.fnt"); //

LIB(mylibsound,"SDHC/sound1.wav"); //

//FILENAME: TU480a.mnu

LIB(mylibfontasc24,"SDHC/asc24.fnt?start=\\0080");

//

LIB(mylibfontasc24b,"SDHC/asc24b.fnt?start=\\105F");

//

2012 iDev Programming Guide Itron

Austin Barlis

14

1.5. SETUP (SYSTEM)
This feature of the iDev language is mainly involved in debugging iDev projects. Certain

system parameters can be changed by the developer in main menu file. The system setup

command in iDev consists of two parts namely “Setup Header” and “Setup Body”.

SETUP command format:

Setup Header

SETUP(SYSTEM)

Setup Body

{

parameter1 = parameter value1;

parameter2 = parameter value2;

parameter3 = parameter value3;

…

}

System Setup

Parameter Expected Values Definition

startup all display messages and bar at start up
(default)

bar display loading bar at start up

none don’t display anything at startup

bled 0 (OFF) to 100 (ON) set backlight level of TFT module, 0
being OFF and 100 to be highest
backlight brightness level (default =
100)

wdog 0 to 16000 milliseconds set the watchdog time out period in
milliseconds (default = 16000),
watchdog timeout is used to prevent
the processor from hanging or latching
up

rotate 0 set orientation of the screen with
respect to PCB, 0 – don’t rotate the
screen (default)

180 rotate the screen 180 degrees with
respect to PCB

test hideTouchAreas hide touch areas (default)

showTouchAreas show touch areas during product
development, useful for placement of
key/touch actions

angles degrees use degrees in calculations (default)

radians use radians in calculations

encode s menu text strings contain single byte
ASCII (default)

w menu text strings contain 2 bytes for
UNIcode

m menu text strings contain multiple
byes for UTF8

calibrate y start the internal touch screen
calibration when turned on

n don’t start touch screen calibration
when turned on (default)

2012 iDev Programming Guide Itron

Austin Barlis

15

clkfreq 80000000 Hz to 92000000 Hz (in 2
MHz steps)

set the external bus clock (default = 92
MHz)

ignore allErrors ignore all error and continue
execution, only recommended when in
debugging and testing stages because
it can cause undesired results (default
= ignore is disabled)

invalidJpg ignore error for unsupported JPG
formats (e.g. progressive) and the
image is skipped

imageTooBig ignore errors when there is not enough
memory to load image and the image
is skipped

Fig. 1.15 Table that describes the parameters that can be changed, expected values and

definition of parameters for System Setup

Based on Fig. 1.15 and the setup command format, an example system set up can be

created:

Fig 1.16 System setup example

Parameters are changed in the Setup Body and the Setup Header is used for setup

recognition. Not all the parameters have to be specified in the Setup Body, if a parameter is

not there, then the parameter value of the omitted parameter is set to its default value.

Later on, the setup command will be used in changing the setup of interfaces; in the example

above, only the system setup is altered.

1.6. RESET
In iDev, the RESET command can be used to clear the contents of Runtime counter, EEPROM

or perform a system reset. The RESET(SYSTEM) command only works reliably (with no lock-

up)in the most recent TFT module versions. For the 3.3” from version 2 onwards, 4.3” is

version 6 onwards, 5.7” is version 4 onwards and 7.0” is version 5 onwards. The RESET

command can be used in any parts of the iDev project e.g. inside a function or an action of a

key component.

RESET command format:

RESET(Name of iDev property)

//FILENAME: TU480a.mnu

SETUP(SYSTEM) //

{

bled = 100; //

wdog = 1000; //

rotate = 0; //

calibrate = n; //

test = showTouchAreas; //

angles = degrees; //

startup = bar; //

encode = s; //

clkfreq = 92000000; //

ignore = imageTooBig; //

}

2012 iDev Programming Guide Itron

Austin Barlis

16

Name of iDev property Definition

SYSTEM
reset the system which
performs a re-boot at power
ON

RUNTIME clear the runtime counter

EEPROM
clear the EEPROM contents
and reload redefined
variables

NAND
clear the NAND flash
memory

NANDMNU
clear the MNU files stored in
NAND flash

NANDLIB
clear the BMP, FNT, WAV
files stored in NAND flash

LIBRARY
clear the contents of the
library

DELETED

clear the page components
and iDev components added
to the deleted list (not
implemented)

Fig 1.17 Table to describe which iDev properties the RESET command

2. CREATING PAGES
In iDev, a page refers to a container for a group of components that is visible on the TFT module. There

are 4 main types of components that can be added to a page namely: text component, image component,

drawing component and key component. An iDev page is analogous to a blank piece of canvas, and the

page’s components are the drawings or sketches that an artist is adding to the canvas. As with the canvas,

the artist can decide what colour, shape or form i.e. style of drawings to add, in iDev the developer can

decide the component’s style as well. Creating a page in iDev comprises of two parts, called “Page

Header” and “Page Body”.

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

Page Components…

}

The Page Header gives specific pages that a developer will use in iDev for page identification. This is

essential because almost all iDev projects will have more than one page, so the developer should know

when and where to show a specific page. On the other hand, Page Body is where the developer states

what components to be added in the page concerned. A Page Header consists of two parameters namely

Page name and Page style. As the name suggests, Page name refers to the name that the developer has

assigned for that specific page. Page style specifies what page style the specific page is going to use.

2012 iDev Programming Guide Itron

Austin Barlis

17

2.1. SETTING UP PAGE (PAGE STYLE)
It was demonstrated in the previous part of the guide on how to create a page, in this part of

the guide setting up a style for page will be shown by introducing a new iDev language

command. Setting the style of the page enables the developer to maintain a common theme

throughout the project. Similar to creating a page and system setup, setting up the page

style consists of Style Header and Style Body.

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

Styles in iDev can be inherited from previously created syles as well. This enables the

developer to create a style based on a different style if both styles are similar and only one or

two style parameters are required to be different.

STYLE command format inherit:

Style Header

STYLE(New Style name, Style name inherit)

Style Body

{

new style parameter 1 = new style value 1;

new style parameter 2 = new style value 2;

new style parameter 3 = new style value 3;

...

}

Page Style

Parameter Expected Values Definition

update all define page refresh method as all (default), all the page
components will be refreshed

changed define page refresh method as changed, only the
specified page components will be refreshed

sizeX (1 to 3) × LCD width set the width of the page, can upscale the page up to
three times larger than the LCD width (default value
depends on LCD’s size e.g. 4.3” module default = 480
5.7” module default = 640)

sizeY (1 to 3) × LCD height set the height of the page, can upscale the page up to
three times larger than the LCD height (default value
depends on LCD’s size e.g. 4.3” module default = 272
5.7” module default = 480)

posX (−4 to 4) × LCD width set the X position/coordinate of the page relative to the
screen (default = 0)

2012 iDev Programming Guide Itron

Austin Barlis

18

posY (−4 to 4) × LCD height set the Y position/coordinate of the page relative to the
screen (default = 0)

opacity 0 to 100 set the opacity of the page (default = 100), 100 is opaque
(not transparent) and 0 is transparent

back colour name or in HEX
\\000000 to \\FFFFFF

set the background colour of the page (default = black)

image library image name set the background image of the page using the stored
image in the project library (default = none)

Fig. 2.1 Table that describes the parameters that can be changed, expected values and

definition of parameters for Page Style

Using the style command format and the table in Fig 2.1 an example page style can be

defined:

Fig. 2.2 Example to show how to define page style properties

The Style Header provides the developer to specify and identify appropriate styles in the iDev

project. This makes it easier for the developer to apply a specific style to another page that

will be created. The Style Body consists of different parameters that change the features of

the page. Style parameters help the developer design his/her project to how they want it to

be. The style parameters that are not defined in the Style Body are set to its default values.

Now that page style is introduced, in the next example, an image stored in the library will be

used as the background of the page that is going to be created.

LIB command format:

LIB(Library image name, "Source/Filename");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

//FILENAME: TU480a.mnu

STYLE(mypagestyle,Page) //

{

update = all; //

sizeX = 480; //

sizeY = 272; //

posX = 0; //

posY = 0; //

back = white; //

}

STYLE(mynewpagestyle,mypagestyle) //

{

back = red; //

opacity = 75; //

}

2012 iDev Programming Guide Itron

Austin Barlis

19

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

Page Components…

}

Fig 2.3 Example to show how to create a page, apply a background to the page by using the

back parameter in the page style

The example in Fig 2.3 shows a how a typical page is prepared in iDev. The system setup

parameters were not defined in this example which means that all the values taken for the

system parameters are default. Now that the page is created and its style is defined, page

components need to be added to the page. The SHOW command is used to display pages

and page components in iDev, this command will be explained thoroughly in Chapter 2.5.1.

2.2. POSITIONING COMPONENTS
Adding page components require the developer to define the position of a page component

being added and/or created. The use of positioning allows the developer to create a layout

that they specifically wanted. The position command changes the cursor; the cursor is a non-

visible indicator that identifies the point in the TFT module that will be affected by input

from the developer. The Page/Page Component can be left blank if the developer only wants

to change the cursor’s position. The cursor can be repositioned in relation to its previous

position by using + or – offset values.

POSN command format:

To change cursor position

POSN(x coordinate, y coordinate);

To reposition cursor position based on previous cursor position

POSN(+ /- x coordinate,+ /- y coordinate);

For single Page/Page Component

POSN(x coordinate, y coordinate, Page/Page Component);

For multiple Page/Page Components

POSN(x coordinate, y coordinate, Page1/Page Component1, Page2/Page Component2…);

//FILENAME: TU480a.mnu

LIB(mylibimage1,"SDHC/image1.bmp"); //

STYLE(mypagestyle,Page) //

{

update = all; //

image = mylibimage1; //

}

PAGE(mypage,mypagestyle) //

{

//Page Components…

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

20

In the code examples, the most common POSN command format used is to change cursor

position. The other POSN command formats are only useful when moving pages or page

components as shown in the example code below:

Fig. 2.4 Example code to show how POSN command format is applied

2.3. DEFINING COMPONENTS
Each page component should have a style defined when being added to the page. As

explained before, using styles enables the developer to keep a consistent theme throughout

the developer’s iDev project. The style command format is consistent in iDev; the only

difference is the style type, parameter and values:

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

2.3.1. TEXT STYLE
The text style describes the features that the developer require for the text

component to be added to a page. The text style command is used in a similar way

on how the page style command is used.

Text Style

Parameter Expected Values Definition

font library font name state the font to be used by either a
preloaded .FNT file or built in fonts: Ascii8,
Ascii16, Ascii32 (case-sensitive, default =
Ascii16)

size positive integer values set the font size of the text e.g. a 12x12 font
is enlarged to 24x24 if font size is increased
from 1 to 2 (default = 1, max = 32)

col reserved words from colour
chart or colour in HEX code

set the colour of the text (default = white)

back reserved words from colour
chart or colour in HEX code

set the colour of the background of the text
component (default = black)

opacity 0 to 100 set the opacity of the text (default = 100),
100 is opaque (not transparent) and 0 is
transparent

maxLen 1 to 512 allocate the RAM for the maximum length of
text component (default = 32)

//FILENAME: TU480a.mnu

POSN(100,25,mypage); //

POSN(100,80,mypagecomponent1,mypagecomponent2,mypagecomponent3);

//

2012 iDev Programming Guide Itron

Austin Barlis

21

maxRows 1 to 32 allocate the RAM for the maximum rows of
text component (default = 1), if more than 1,
new line \\0D\\0A is used (usage explained
in Chapter 2.3.3)

rotate 0 rotate the text component by 0° relative to
the screen – don’t rotate text (default)

90 rotate the text component by 90° relative to
the screen

180 rotate the text component by 180° relative
to the screen

270 rotate the text component by 270° relative
to the screen

curRel CC specify the placement/justification of text
relative to the cursor to Centre Centre
(default)

TC specify the placement/justification of text
relative to the cursor to Top Centre

BC specify the placement/justification of text
relative to the cursor to Bottom Centre

RC specify the placement/justification of text
relative to the cursor to Right Centre

LC specify the placement/justification of text
relative to the cursor to Left Centre

TL specify the placement/justification of text
relative to the cursor to Top Left

BL specify the placement/justification of text
relative to the cursor to Bottom Left

TR specify the placement/justification of text
relative to the cursor to Top Right

BR specify the placement/justification of text
relative to the cursor to Bottom Right

xTrim Y or N set the spacing in between each characters
in text components, if yes spacing is spread
evenly and no spacing is set to none – text is
compressed (default = Y)

Fig. 2.5 Table that describes the parameters that can be changed, expected values

and definition of parameters for Text Style

Using the table above and the style command format, an example to define a text

component can be done:

Fig. 2.6 Example to show how to define text style properties

//FILENAME: TU480a.mnu

STYLE(myfontAscii32,Text) //

{

font = Ascii32; //

size = 2; //

col = white; //

opacity = 75; //

maxRow = 1; //

maxLen = 11; //

}

2012 iDev Programming Guide Itron

Austin Barlis

22

2.3.2. TEXT COMPONENT
The text component format is really similar when creating/adding the other

components to the page. The text data source can either be raw text enclosed in

quotation marks or text data variable.

Fig 2.7 Screen shot of what you will see on the TFT module when example code in Fig

2.8 is uploaded: Text Component, “Hello World” should appear in the middle

TEXT command format:

TEXT(Text component name, "Text component", Text Style);

TEXT command format with text data source from a variable:

TEXT(Text component name, Text variable, Text Style);

Now that all the knowledge necessary to add a text component to a page is

introduced, an example can be created. Building upon the example in Fig 2.4, a text

component can be added. To provide better guidance, newly added and modified

parts of the code are highlighted:

LIB command format for multiple transformations:

LIB(Library image name, "Source/Filename?transformation1&transformation2..");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

mytext

2012 iDev Programming Guide Itron

Austin Barlis

23

PAGE command format

Page Header

PAGE(Page name, Page style)

Page Body

{

POSN(x coordinate, y coordinate);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

}

Fig 2.8 Example code on how to add text component to a page

In iDev, memory allocation is an important aspect that a developer has to keep

track of. Poor memory allocation can lead to errors, long loading times or TFT

module crashing. On the other hand, good memory allocation provides an efficient

way that allows the TFT module to run smoothly. The pages and page components

in iDev uses memory, good memory allocation can be achieved by allocating the

maximum predicted size that a page component will be using. In the example code

above, memory allocation is achieved by setting the style parameter maxRow and

maxLen to the maximum predicted row and length by the developer. In the

example code above, maxRow is set to 1 and maxLen is set to 11 because only 1

row of text is needed and required and the text component has 11 characters.

//FILENAME: TU480.mnu

LIB(mylibimage1,"SDHC/image1.bmp"); //

STYLE(mypagestyle,Page) //

{

update = all; //

image = mylibimage1; //

}

STYLE(myfontAscii32,Text) //

{

font = Ascii32; //

size = 2; //

col = white; //

opacity = 75; //

maxRow = 1; //

maxLen = 11; //

}

PAGE(mypage,mypagestyle) //

{

POSN(240,135); //

TEXT(mytext,"Hello World",myfontAscii32); //

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

24

2.3.3. TEXT MANIPULATION
There are other ways in iDev to manipulate text components other than using

different style values. This part will explain what types of text component

manipulation is possible and how to achieve it. When the developer requires the

text component to be displayed in more than one row, then the HEX code \\0D\\0A

has to be used. The code in Fig 2.7 will be used and modified to display text

components in different rows.

Fig 2.9 Screen shot of what you will see on the TFT module when example code in Fig

2.10 is uploaded

LIB command format:

LIB(Library image name, "Source/Filename");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

POSN command format:

POSN(x coordinate, y coordinate);

TEXT command format using text component and text cursor manipulation:

TEXT(Text component name, "\\HEX CodeText component", Text Style);

}

mytext

2012 iDev Programming Guide Itron

Austin Barlis

25

Fig 2.9 Example code to show how to manipulate text row components using HEX

code \\0D\\0A

Like in any text editors such as Microsoft Word, when writing and editing text, the

“Enter” button moves the cursor indicator to the next row. In iDev, the HEX code

\\0D\\0A is an equivalent to the “Enter” button in text editors. This enables the

developer to create multiple rows of text defined in one text component. The style

parameter maxRow is increased to 2 because 2 rows of text component are

required and maxLen is increased to 24 because approximately 24 characters would

be the maximum requirement. This is a perfect example on how to achieve good

memory allocation. The developer can specify certain types of text so that

appropriate text components can be displayed on the TFT module. In iDev a text

component can contain single byte HEX code from \\00 to \\FF.

TEXT command format using text component and text cursor manipulation:

TEXT(Text component name, "\\HEX CodeText component", Text Style);

It is important to remember that more than one text cursor and text component

manipulating HEX codes can be applied at a time.

HEX code Definition

\\01 Using this HEX code defines the text data as a password. If a text
component is defined as a password then usually, the developer would
want to display “*” on the screen for each character.

\\02 This HEX code inserts a hidden text cursor in the text component with
insert off and overwrite on. This is useful in iDev projects that use a
virtual on screen keyboard. When overwrite is on, then the text
component is replaced by the new text input that is present on and after
its current location from the on screen keyboard.

//FILENAME: TU480a.mnu

LIB(mylibimage1,"SDHC/image1.bmp"); //

STYLE(mypagestyle,Page) //

{

update = all; //

image = mylibimage1; //

}

STYLE(myfontAscii32,Text) //

{

font = Ascii32; //

size = 2; //

col = white; //

opacity = 75; //

maxRow = 2; //

maxLen = 24; //

}

PAGE(mypage,mypagestyle) //

{

POSN(240,135); //

TEXT(mytext,"first row\\0D\\0Asecond row",myfontAscii32);

//

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

26

\\03 This HEX code inserts a hidden text cursor in the text component with
insert on. When insert is on, then the text component is not replaced by
the new text input from the on screen virtual keyboard, instead a
character is inserted at the cursor’s current position and in the process
moving all characters past it one position further.

\\04 This HEX code inserts a visible horizontal line/underline cursor under the
next character with insert off and overwrite on. This is useful in iDev
projects that use a virtual on screen keyboard.

\\05 This HEX code inserts a visible horizontal line/underline cursor under the
next character with insert on. This is useful in iDev projects that use a
virtual on screen keyboard.

\\06 This HEX code inserts a block cursor in the next character with insert off
and overwrite on. This is useful in iDev projects that use a virtual on
screen keyboard.

\\07 This HEX code inserts a block cursor in the next character with insert off.
This is useful in iDev projects that use a virtual on screen keyboard.

Fig. 2.11 Table to show appropriate HEX codes to apply different text component

and text cursor manipulation

 The code example in Fig 2.9 will be used and modified to provide a usage example

of the HEX codes for text component and cursor manipulation. A screen shot of

what is to be expected when the modified code is uploaded into the TFT module is

found below.

Fig. 2.12 Screen shot of what you will see on the TFT module when example code in

Fig 2.13 is uploaded

mytext1

mytext2

2012 iDev Programming Guide Itron

Austin Barlis

27

LIB command format:

LIB(Library image name, "Source/Filename");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

POSN command format:

POSN(x coordinate, y coordinate);

TEXT command format using text component and text cursor manipulation:

TEXT(Text component name, "\\HEX CodeText component", Text Style)

}

Fig. 2.13 Example code to demonstrate how text component and text cursor

manipulation are applied by using HEX codes

In the example code above, the style of the text component is reduced to 1 and the

HEX codes \\01 and \\04 are used. The HEX codes are placed before the applicable

//FILENAME: TU480a.mnu

LIB(mylibimage1, "SDHC/image1.bmp"); //

STYLE(mypagestyle,Page) //

{

update = all; //

image = mylibimage1; //

}

STYLE(myfontAscii32,Text) //

{

font = Ascii32; //

size = 1; //

col = white; //

opacity = 75; //

maxRows = 2; //

maxLen = 24; //

}

PAGE(mypage,mypagestyle) //

{

POSN(240,100); //

TEXT(mytext1, "this is a \\01password\\01 text", myfontAscii32);

//

POSN(240,135); //

TEXT(mytext2, "H\\04ello World", myfontAscii32);

//

}

SHOW(mypage);

2012 iDev Programming Guide Itron

Austin Barlis

28

character in all cases. In the text component mytext1 the HEX code \\01 is used

twice, this is because the HEX code \\01 is used for passwords and acts as a toggle.

If the HEX code \\01 is only used (if the text component is “this is a \\01password

text”), all the characters after it will be recognised as a password, hence displayed

as “*************”. The text component mytext2 contains the HEX code \\04

which inserts an underline cursor under the next character applied. The screen shot

below shows the changes that the screen will display. The cursor manipulating HEX

codes \\02 to \\07 are fully utilised in an iDev keyboard projects (link here for

‘Keyboard Project’ and link here for ‘Multi Language Keyboard Project’). In some

iDev projects, the text string in the text component that has been created before

can be changed and to make this change visible then a different command format

followed by a page refresh usually is needed.

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

2.3.4. IMAGE STYLE
The features of an image used in iDev are controlled by its style. In iDev, all styles

have the same command format, so Image styles yield to this command format as

well.

Image Style

Parameter Expected Values Definition

scale positive integer
value

set the scaling of the library image (default =
100)

maxX/sizeX 1 to 3 × width of
TFT module

allocate the RAM for the maximum width of the
image (default = width of TFT module: 4.3”
default = 480)

maxY/sizeY 1 to 3 × height of
TFT module

allocate the RAM for the maximum height of the
image (default = height of TFT module: 4.3”
default = 272)

rotate 0 rotate the image component by 0° relative to
the screen – don’t rotate image (default)

90 rotate the image component by 90° relative to
the screen

180 rotate the image component by 180° relative to
the screen

270 rotate the image component by 270° relative to
the screen

action i or instant set the way in which an image appears on the
screen instantly to the specified screen
position/coordinates, the action parameter is
useful for slideshows or animations (default)

u or up set the way in which an image appears on the
screen moving up towards the specified screen
position/coordinates

d or down set the way in which an image appears on the
screen moving down

l or left set the way in which an image appears on the
screen moving left towards the specified screen
position/coordinates

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/KeyBoardC&Ptype=zip
http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/MultiLang&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

29

r or right set the way in which an image appears on the
screen moving right towards the specified
screen position/coordinates

ur or ru or
upright

set the way in which an image appears on the
screen moving up and right towards the
specified screen position/coordinates

dr or rd or
downright

set the way in which an image appears on the
screen moving down and right towards the
specified screen position/coordinates

ul or lu or upleft set the way in which an image appears on the
screen up and left towards the specified screen
position/coordinates

dl or ld or
downleft

set the way in which an image appears on the
screen down and left towards the specified
screen position/coordinates

a or all sets to sequence through all image actions
except instant

step 1 to LCD TFT
height/width

sets the steps that the image action will take to
appear on the screen, e.g. if the step is set to 5
and action to up, then the image will move up
towards the specified destination, 5 pixels at a
time and the time it takes for the image action
to finish depends upon the image size (default =
20)

opacity 0 to 100 set the opacity of the image (default = 100), 100
is opaque (not transparent)

curRel CC specify the placement/justification of text
relative to the cursor to Centre Centre (default)

 TC specify the placement/justification of text
relative to the cursor to Top Centre

 BC specify the placement/justification of text
relative to the cursor to Bottom Centre

 RC specify the placement/justification of text
relative to the cursor to Right Centre

 LC specify the placement/justification of text
relative to the cursor to Left Centre

 TL specify the placement/justification of text
relative to the cursor to Top Left

 BL specify the placement/justification of text
relative to the cursor to Bottom Left

 TR specify the placement/justification of text
relative to the cursor to Top Right

 BR specify the placement/justification of text
relative to the cursor to Bottom Right

Fig 2.14 Table to describe Image Style parameters and its definition

Similar to text styles, there are different combinations available when creating

image styles to suit a specific iDev project. If Style command format is required for

better referencing, go to Chapter 2.3 of this guide. Using the style command format

and the information in Fig 2.14, an Image Style example can be done:

2012 iDev Programming Guide Itron

Austin Barlis

30

Fig 2.15 Example code to show how to define image style properties

2.3.5. IMAGE COMPONENT
In the iDev language, BMP and JPG image file types are supported. However, if

transparency transformation is required then BMP files are highly recommended.

Image components can be added to a page by the developer from 2 different

sources. The source image can come from the iDev library or straight from the SDHC

card.

IMG command format for image already stored in iDev Library:

IMG(Image component name, Library Image name, Image Style);

IMG command format for image stored in SDHC card:

IMG(Image component name, "Source/Filename", Image Style);

The IMG command format is used to add 2 images to the example code in Fig 2.17.

A screenshot of what to expect when the code is uploaded is found below.

Fig 2.16 Screen shot of what you will see on the TFT module when example code in

Fig 2.17 is uploaded

//FILENAME: TU480a.mnu

STYLE(myimagestyle,Image) //

{

scale = 150; //

maxX = 600; //

maxY = 300; //

opacity = 85; //

step = 10; //

}

myimage1

myimage2

mytext1

mytext2

2012 iDev Programming Guide Itron

Austin Barlis

31

An example based on Fig 2.13 is going to be used and modified to add two image

components to the page mypage:

LIB command format:

LIB(Library image name, "Source/Filename");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

IMG command format:

IMG(Image component name, Library Image name, Image Style);

IMG command format for image stored in SDHC card:

IMG(Image component name, "Source/Filename", Image Style);

}

2012 iDev Programming Guide Itron

Austin Barlis

32

Fig 2.16 Example code do demonstrate how to add image components to a page

from two different sources

The example in Fig 2.16 uses 2 different image styles with different image style

parameters. This shows how multiple styles can be applied in different image

components. In this example memory allocation is achieved by setting the maxX

and maxY parameter to the size of the image used.

//FILENAME: TU480a.mnu

LIB(mylibimage1,"SDHC/image1.bmp"); //

LIB(mylibimage2,"SDHC/image2.bmp"); //

STYLE(mypagestyle,Page) //

{

update = all; //

image = mylibimage1; //

}

STYLE(myfontAscii32,Text) //

{

font = Ascii32; //

size = 1; //

col = white; //

opacity = 75; //

maxRows = 2; //

maxLen = 24; //

}

STYLE(myimagestyle1,Image) //

{

maxX = 100; //

maxY = 50; //

scale = 115; //

opacity = 70; //

}

STYLE(myimagestyle2,Image) //

{

maxX = 100; //

maxY = 50; //

scale = 80; //

opacity = 100; //

} //

PAGE(mypage,mypagestyle) //

{

POSN(240,100); //

TEXT(mytext1,"this is a \\01password\\01 text",myfontAscii32);

//

POSN(240,135); //

TEXT(mytext2,"H\\04ello World",myfontAscii32);

//

POSN(100,40); //

IMG(myimage1,mylibimage2,myimagestyle1);

//

POSN(350,200); //

IMG(myimage2,"SDHC/image3.bmp",myimagestyle2);

//

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

33

2.3.6. IMAGE MANIPULATION
In Chapter 1.4.2, library image transformations were explained and in this part of

the guide those transformations will be used. For easier visualisation, 6 images will

be added to the page in the example code and each image will have different

transformation applied. Since 6 image components are now going to be used,

typical iDev naming convention will be introduced to minimise confusion.

Fig 2.18 Screen shot to show what would be displayed on the TFT module when the

code in Fig 2.19 is uploaded

LIB command format for multiple transformations:

LIB(Library image name, "Source/Filename?transformation1&transformation2..");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

POSN command format:

POSN(x coordinate, y coordinate);

IMG command format:

IMG(Image component name, Library Image name, Image Style);

}

greenbimg

redbimg

tickfitimg

tickminimg

num1img1

num1img2

2012 iDev Programming Guide Itron

Austin Barlis

34

Fig. 2.19 Example code to demonstrate image manipulation

The example above exhibits image manipulation by using the LIB, POSN, STYLE, and

IMG commands. As explained previously in Chapter 1.4.2, some image

transformations can already be applied using the LIB command but some

//FILENAME: TU480a.mnu

LIB(greenblib,"SDHC/greenbox.bmp?scale=150");

//

LIB(redblib,"SDHC/redbox.bmp?rotate=90&scale=90");

//

LIB(tickfitlib,"SDHC/number1.bmp?scale=fit&width=60&height=100");

//

LIB(tickminlib,"SDHC/number1.bmp?scale=min&width=60&height=100");

//

LIB(num1lib1,"SDHC/tick.bmp?back=\\0000CD&scale=70");

//

LIB(num1lib2,"SDHC/tick.bmp?scale=40");

//

STYLE(mypagestyle,Page) //

{

update = all; //

back = white; //

}

STYLE(myimagestyle1,Image) //

{

maxX = 250; //

maxY = 180; //

scale = 115; //

opacity = 70; //

curRel = CC; //

}

STYLE(myimagestyle2,Image) //

{

maxX = 100; //

maxY = 100; //

scale = 80; //

opacity = 100; //

curRel = LC; //

}

STYLE(myimagestyle3,Image) //

{

maxX = 100; //

maxY = 100; //

scale = 60; //

opacity = 30; //

curRel = RC; //

}

PAGE(mypage,mypagestyle) //

{

POSN(100,40); //

IMG(greenbimg,greenblib,myimagestyle1); //

POSN(20,+150); //

IMG(redbimg,redblib,myimagestyle1); //

POSN(180,-75); //

IMG(tickfitimg,tickfilib,myimagestyle1); //

POSN(+20,+100); //

IMG(tickminimg,tickminlib,myimagestyle1); //

POSN(400,60); //

IMG(num1img1,num1lib1,myimagestyle1); //

POSN(+0,200); //

IMG(num1img2,num1lib2,myimagestyle1); //

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

35

transformations such as scaling and rotation can be applied using the STYLE

command for an image as well. If both commands are used to perform the same

transformation such as scaling then, the scaling transformation in the LIB command

is applied first then the scaling is applied to the image component by the STYLE

command. For example, the library image num1img2 from the example code in Fig

2.17 has been set to decrease the scale of the image tick.bmp to 40%; the image

component myimage6 has used num1img2 as an image source and myimagestyle1

as an image style. The image style myimagestyle1 is set to increase the scale of the

image component to 115%; as a result the scale image tick.bmp is reduced to 40%

and then increased to 115%. The same occurs when a rotation transformation is

applied to an image component. Another image manipulation that most developers

would end up using is the image transparency transformation, unlike the scale and

rotate transformation; transparency can only be applied using the LIB command.

The difference between images with transparency transformation applied is evident

in the screen shot below; for better demonstration the same image is used for both

image components. The image component num1img1 has the transparency

transformation applied but image component num1img2 doesn’t. The library image

tickfitimg and tickminimg have the other two types of scale transformation that can

be applied to an image and the difference between the two is evident in the screen

shot below. As stated in Chapter 2.2, POSN commands can be used to reposition

the cursor; the usage is demonstrated in the example code’s Page Body in Fig 2.18.

2.3.7. DRAW STYLE
The features of shapes and graphs drawn in iDev are controlled by its style.

Draw Style

Parameter Expected Values Definition

type c or circle circle shape style – draws a circle of the specified
diameter, lower value in x and y parameter taken as
diameter (default)

b or box box shape style – draws a box of the specified height
(x parameter) and width (y parameter)

l or line line shape style – draws a line of the length and angle
based on x and y parameter

x or xBar bar x graph style – draws horizontal line from 0 to x
and clears from x+1 to xmax

y or yBar bar y graph style – draws a vertical line from 0 to y
and clears from y+1 to ymax

p or pixel scatter graph style – creates a pixel at the point x,y

t or trace trace/line graph style – joins the dots between
current point and previous point

maxX 1 to 3 × width of
TFT module

allocate the RAM for the maximum width of the draw
component (default = width of TFT module: 4.3”
default = 480)

maxY 1 to 3 × height of
TFT module

allocate the RAM for the maximum height of the draw
component (default = height of TFT module: 4.3”
default = 272)

col HEX code or
colour name,
Alpha in HEX

specify the line border colour of the shape, if
transparency is required use alpha in HEX e.g. col =
\\80FFFFF00; displays 50% transparent yellow
(default = white)

2012 iDev Programming Guide Itron

Austin Barlis

36

back HEX code or
colour name,
Alpha in HEX

specify the fill colour of the shape, if transparency is
require use alpha in HEX, same with col parameter
(default = black)

opacity 0 to 100 set the opacity of the draw component (default =
100), 100 is opaque (not transparent)

width positive integer
value

specify the graph/shape component width (default =
1)

rotate 0 rotate the draw component by 0° relative to the
screen – don’t rotate shape/graph (default)

90 rotate the draw component by 90° relative to the
screen

180 rotate the draw component by 180° relative to the
screen

270 rotate the image component by 270° relative to the
screen

curRel CC specify the placement/justification of shape/graph
relative to the cursor to Centre Centre (default)

TC specify the placement/justification of shape/graph
relative to the cursor to Top Centre

BC specify the placement/justification of shape/graph
relative to the cursor to Bottom Centre

RC specify the placement/justification of shape/graph
relative to the cursor to Right Centre

LC specify the placement/justification of shape/graph
relative to the cursor to Left Centre

TL specify the placement/justification of shape/graph
relative to the cursor to Top Left

BL specify the placement/justification of shape/graph
relative to the cursor to Bottom Left

TR specify the placement/justification of shape/graph
relative to the cursor to Top Right

BR specify the placement/justification of shape/graph
relative to the cursor to Bottom Right

xOrigin positive integer
value

for graph styles, specify x origin with respect to
declared graph (default = 0)

yOrigin positive integer
value

for graph styles, specify y origin with respect to
declared graph (default = 0)

xScale positive integer
value

for graph styles, scale the x coordinate value
automatically to fit the declared graph

yScale positive integer
value

for graph styles, scale the y coordinate value
automatically to fit the declared graph

xScroll positive integer
value

for graph styles, set the scroll direction and
increment/speed of graph to display along the x axis
e.g. xScroll = 5, left to right by 5 pixels or xScroll = -20,
right to left by 20 pixels (default = 0 – none)

yScroll positive integer
value

for graph styles, set the scroll direction and
increment/speed of graph to display along the y axis,
same format as xScroll (default = 0 – none) non
operational

Fig 2.20 Table to describe Text Style parameters and its definition

2012 iDev Programming Guide Itron

Austin Barlis

37

In this stage of the guide, the developer should now be familiar with the STYLE

command format and its usage. For better referencing and guidance, the STYLE

command format can be found in Chapter 2.3.

Fig 2.21 Example code to show how to define draw style properties

2.3.8. DRAW COMPONENT
Draw components can either be a shape or a graph. The different types of shapes

and graphs that can be used are found in Fig 2.20. These draw components can be

just an outline or filled. Alpha blending of the draw component colour is supported

in iDev but quicker display updates is achieved if the draw component doesn’t have

alpha blending.

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

In the example code below, the page mypage based on the previous example codes

will be modified to show a box shape component and circle shape component.

Fig 2.22 Screen shot to show what would be displayed on the TFT module when the

code in Fig 2.23 is uploaded

//FILENAME: TU480a.mnu

STYLE(mydrawstyle,Draw) //

{

type = b; //

width = 5; //

back = grey; //

col = red; //

curRel = LR; //

}

circledrw

boxdrw

2012 iDev Programming Guide Itron

Austin Barlis

38

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

}

Fig 2.23 Example code to demonstrate how the draw command is used

//FILENAME: TU480a.mnu

STYLE(mypagestyle,Page) //

{

update = all; //

back = white; //

}

STYLE(myboxstyle,Draw) //

{

type = b; //

maxX = 100; //

maxY = 70; //

width = 5; //

back = grey; //

col = red; //

curRel = LC; //

}

STYLE(mycirclestyle,Draw) //

{

type = c; //

maxX = 100; //

maxY = 100; //

width = 8; //

back = yellow; //

col = purple; //

curRel = RC; //

}

PAGE(mypage,mypagestyle) //

{

POSN(310,130); //

DRAW(boxdrw,100,70,myboxstyle); //

POSN(150,60); //

DRAW(circledrw,100,150,mycirclestyle); //

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

39

As mentioned previously in this guide, memory allocation is important and the code

in Fig 2.23 demonstrates how it is implemented in draw components. For the draw

style myboxstyle, the style parameter maxX is set to be the same as the box

component’s length and same goes with maxY and width. The diameter of a circle

component in iDev can either be the x or y parameter value in the DRAW command

format. The diameter taken is the lower parameter value; in the example above the

circle component circledrw has a diameter of 100, not 150.

2.3.9. DRAW MANIPULATION
If the developer requires alpha blending in draw components, then it should be

specified in the draw style of the draw component concerned. The example code in

Fig 2.23 will be modified to include alpha blending to the draw components and

also the background will be changed to emphasise the alpha blending.

Fig 2.24 Screen shot to show what would be displayed on the TFT module when the

code in Fig 2.25 is uploaded

LIB command format for images:

LIB(Library image name, "Source/Filename");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

circledrw

boxdrw

2012 iDev Programming Guide Itron

Austin Barlis

40

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

POSN command format:

POSN(x coordinate, y coordinate);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

}

//FILENAME: TU480a.mnu

LIB(sunsetlib,"SDHC/sunset.bmp"); //

STYLE(mypagestyle,Page) //

{

update = all; //

image = sunsetlib; //

}

STYLE(myboxstyle,Draw) //

{

type = b; //

maxX = 100; //

maxY = 70; //

width = 5; //

back = \\BECCCCCC; //

col = red; //

curRel = LC; //

}

STYLE(mycirclestyle,Draw) //

{

type = c; //

maxX = 100; //

maxY = 100; //

width = 8; //

back = \\70FFFF00; //

col = purple; //

curRel = RC; //

}

PAGE(mypage,mypagestyle) //

{

POSN(310,130); //

DRAW(boxdrw,100,70,myboxstyle); //

POSN(150,60); //

DRAW(circledrw,100,150,mycirclestyle); //

}

SHOW(mypage); //

Fig 2.24 Example code demonstrating how alpha blending is applied to draw

components

In order to apply alpha bending the colour of the draw component have to be

converted into HEX code. The colour yellow when converted to HEX code is FFFF00

and grey is CCCCCC. The level of alpha blending or transparency to be applied to the

draw component should also be in HEX code. There are 256 levels of

transparency/alpha blending that can be applied to a draw component. In the

example above, the alpha value used in HEX is BE for circledrw and 70 for boxdrw.

In effect the draw component circledrw now has an alpha blending level of 190 (BE

2012 iDev Programming Guide Itron

Austin Barlis

41

in HEX is 190 in decimal) and boxdrw has an alpha blending level of 112 (70 in HEX is

112 in decimal). Graphs can also be created using the DRAW command in iDev but it

is not as simple as creating shapes. Graph components are fully utilised if either x

and y or both coordinate values are continuously varying e.g. it can be used in iDev

projects displaying sensor outputs. Due to the complexity required applying graphs,

an example project using the DRAW command and other iDev commands to create

graphs is introduced in Chapter 9. There is an example project called ’25 Samples /

Second ADC1 Graph Project’ (link here) from the website that uses the DRAW

command to create graphs displaying values based on ADC inputs.

2.3.10. KEY STYLE
The features of key/touch actions in iDev are controlled by its style.

Key Style

Parameter Expected Values Definition

type

touch
specify the type of input for the TFT display to be
touch (default)

keyio
specify the type of input for the TFT display to be an
external keyio (see Chapter 4.9)

debounce
value in
milliseconds

set the time delay for the key press to be detected
and stabilise (default = 50)

delay
value in
milliseconds

set the time delay before autorepeat occurs – when
autorepeat is enabled, key press action is repeatedly
detected (default = 500, if 0 autorepeat is disabled)

repeat
value in
milliseconds

set the repeat period if the key action is held down
(default = 500)

action

d or down
set the action detected when a key is pressed
(default)

u or up set the action detected when a key is released

c or change
set the action detected when either a key is pressed
or released (not supported in external keyio)

curRel

CC
specify the placement/justification of key
component relative to the cursor to Centre Centre
(default)

TC
specify the placement/justification of key
component relative to the cursor to Top Centre

BC
specify the placement/justification of key
component relative to the cursor to Bottom Centre

RC
specify the placement/justification of key
component relative to the cursor to Right Centre

LC
specify the placement/justification of key
component relative to the cursor to Left Centre

TL
specify the placement/justification of key
component relative to the cursor to Top Left

BL
specify the placement/justification of key
component relative to the cursor to Bottom Left

TR
specify the placement/justification of key
component relative to the cursor to Top Right

BR
specify the placement/justification of key
component relative to the cursor to Bottom Right

Fig. 2.26 Table to describe Key Style parameters and its definition

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/ADCTraceCv2&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

42

For the KEY command there is built in styles that may be suitable for general use

and the table below describes the styles’ parameter values.

Parameter Built in KEY styles

TOUCH TOUCHR TOUCHC

type touch touch touch

debounce 50 50 50

repeat1 0 1000 1000

repeat2 0 200 200

action D D C

Fig. 2.27 Table describing built-in KEY styles in iDev

2.3.11. KEY COMPONENT
In iDev, key components refer to touch/press input by the user. The developer can

manipulate the key components’ size/detecting area or define a key on the external

keyboard. Using the KEY command, the developer can then specify the function to

start, e.g. a toggle button would have a function that changes the colour of the

button when it is pressed or inline commands such as RUN, SHOW, HIDE and LOAD

commands. Multiple inline commands can be used, a comma can is used to

separate each command. The X and Y parameter refers to the size of the key area in

the screen when the style type of the key is touch. If the style type of the key is

keyio i.e. external keys is used, then X and Y parameter refers to the location of the

connection between the key input/output ports and the external key.

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2..], X, Y, Key style);

In the example code below, the page mypage based on the previous example codes

will be modified to create a key component that can be used as a toggle button.

They KEY command requires actions when a key is pressed by the user and

sometimes the FUNC command is used. The FUNC command is explained further in

Chapter 2.6 of this guide, for now inline commands SHOW and HIDE will be used in

the example code below:

2012 iDev Programming Guide Itron

Austin Barlis

43

Fig. 2.28 Screen shot to display when the key component hidekey is pressed

Fig. 2.29 Screen shot to display when the key component showkey is pressed

LIB command format for images:

LIB(Library image name, "Source/Filename");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

circledrw

showkey

hidekey

showkey

hidekey

2012 iDev Programming Guide Itron

Austin Barlis

44

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2..], X, Y, Key style);

}

Fig. 2.30 Example code demonstrating how to use the KEY command with inline

commands

//FILENAME: TU480a.mnu

LIB(greenblib,"SDHC/greenbox.bmp"); //

LIB(redblib,"SDHC/redbox.bmp"); //

STYLE(mypagestyle,Page) //

{

update = changed; //

back = white; //

}

STYLE(mycirclestyle,Draw) //

{

type = c; //

maxX = 100; //

maxY = 100; //

width = 8; //

back = yellow; //

col = purple; //

curRel = CC; //

}

STYLE(myfontAscii16,Text) //

{

font = Ascii16; //

size = 1; //

col = white; //

maxRows = 1; //

maxLen = 24; //

}

STYLE(mykeystyle,Key) //

{

debounce = 30; //

action = d; //

}

PAGE(mypage,mypagestyle) //

{

POSN(250,95); //

DRAW(circledrw,120,100,mycirclestyle); //

HIDE(circledrw); //

POSN(100,50); //

KEY(showkey,[SHOW(circledrw);;],100,50,mykeystyle); //

IMG(greenbut,greenbimg,myimagestyle); //

TEXT(showtxt,"SHOW",myfontAscii16); //

POSN(+0,+100); //

KEY(hidekey,[HIDE(circledrw);;],100,50,mykeystyle); //

IMG(redbut,redbimg,myimagestyle); //

TEXT(hidetxt,"HIDE",myfontAscii16); //

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

45

The key components showkey and hidekey are used to show and hide the draw

component circldrw respectively. The SHOW command is used to display page or

page components and HIDE command is used to choose which page or page

components not to display. They key components both use the SHOW and HIDE

commands which is explained thoroughly in Chapter 2.5.1 and 2.5.2 of this guide.

The example code also uses the IMG and TEXT commands to create a “button”. The

usage of double semicolons (;;) is explained in Chapter 2.4 of this guide, but it is

basically used for page components that have currently change its state so a page

component refresh is required. Since a key component isn’t a visible component,

the screenshots below would display when the button is pressed and not pressed

and the position of the key component would be exactly the same as the image

component and the text component.

Another example that will be shown is the usage of external keys for the key

components. As this involves a physical keyboard and the keys input and output

interface, a screenshot would not demonstrate anything properly. The use of

interfaces is explained in Chapter 4 of this guide.

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2], X, Y, Key style);

}

2012 iDev Programming Guide Itron

Austin Barlis

46

Fig. 2.31 Example code to demonstrate how key component with style keyio is used

As mentioned in Chapter 2.3.11, the X and Y parameter in keyio refers to the

connection between the external keyboard and the key input and output ports of

the TFT module. The key component showkey is set to perform the inline command

SHOW(circledrw) when external key K00 and K01 are connected and the key

component hidekey when external key K02 and K03. There are 30 external keys that

can be connected to the TFT module and external keys that are being used can be

specified in the KEY command format by using HEX codes.

2.3.12. KEY MANIPULATION
In iDev, the use of key components enables the developer to get inputs from the

user and also provide a user interface. In all user interfaces that use a touchscreen,

toggle buttons are always present. The example below would be using the VAR,

FUNC and IF command, all of which is explained in Chapter 3.1.2, Chapter 2.6 and

Chapter 3.4 of this guide respectively.

//FILENAME: TU480a.mnu

SETUP(KEYIO) //

{

active = \\0000001F; //

keyb = \\0000000F; //

}

STYLE(mypagestyle,Page) //

{

update = changed; //

back = white; //

}

STYLE(myfontAscii16,Text) //

{

font = Ascii16; //

size = 1; //

col = white; //

maxRows = 1; //

maxLen = 24; //

}

STYLE(mykeystyle,Key) //

{

type = keyio; //

debounce = 10; //

action = d; //

}

PAGE(mypage,mypagestyle) //

{

POSN(250,95); //

DRAW(circledrw,120,100,mycirclestyle); //

HIDE(circledrw); //

POSN(100,50); //

KEY(showkey,[SHOW(circledrw);;],K00,K01,mykeystyle); //

TEXT(showtxt,"SHOW",myfontAscii16); //

POSN(+0,+100); //

KEY(hidekey,[HIDE(circledrw);;],K02,K03,mykeystyle); //

TEXT(hidetxt,"HIDE",myfontAscii16); //

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

47

Fig. 2.32 Screen shot to display when the key component togglekey is not pressed

Fig 2.33 Screen shot to display when the key component togglekey is pressed

LIB command format for multiple transformations:

LIB(Library image name, "Source/Filename?transformation1&transformation2..");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

togglekey

togglekey

2012 iDev Programming Guide Itron

Austin Barlis

48

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format

KEY(Key component name, Function name, X, Y, Key style);

}

//FILENAME: TU480a.mnu

LIB(togofflib,"SDHC/togoff.bmp"); //

LIB(togonlib,"SDHC/togon.bmp"); //

VAR(togvar,0,U8); //

STYLE(mypagestyle,Page) //

{

update = changed; //

back = white; //

}

STYLE(myimagestyle,Image) //

{

maxX = 150; //

maxY = 50; //

}
STYLE(mykeystyle,Key) //

{

debounce = 30; //

action = d; //

}

PAGE(mypage,mypagestyle) //

{

POSN(240,135); //

KEY(togglekey,istogfunc,150,50,mykeystyle); //

IMG(togoffbut,togofflib,myimagestyle); //

IMG(togonbut,togonlib,myimagestyle); //

HIDE(togonbut); //

}

FUNC(istogfunc) //

{

IF(togvar = 0?[RUN(togfunc);]:[RUN(nottogfunc);]);

//

}

FUNC(togfunc) //

{

HIDE(togoffbut); //

SHOW(togonbut); //

LOAD(togvar,1);; //

}

FUNC(nottogfunc) //

{

HIDE(togonbut); //

SHOW(togoffbut); //

LOAD(togvar,0);; //

}

SHOW(mypage); //

Fig 2.34 Example code demonstrating how to create a toggle button

The toggle button works by having two images placed in the same position and on

top of each other. Then when the “button” is pressed the appropriate image is

shown depending on the toggle button’s state. The image being shown or hidden is

2012 iDev Programming Guide Itron

Austin Barlis

49

achieved by the use of the SHOW and HIDE command. The example code in Fig 2.32

uses VAR command to create a variable. This variable is used as an indicator for the

state of the toggle button. The VAR command is described thoroughly in Chapter

3.1 of this guide. The FUNC command is also used in this example to specify the

actions to take when the toggle button is pressed. If further understanding of the

FUNC command is needed refer to Chapter 2.6 of this guide. Lastly the IF command

is used to create a condition to specify which function to run depending on the

state of the toggle button. The IF command is explained in Chapter 3.4 of this guide.

The state of the toggle button determines which function to perform; if the button

is pressed show the appropriate image and vice-versa. There are other touchscreen

key elements that can be created in iDev such as scroll bars or cursor/mouse

indicator. There are example codes in Chapter 9 demonstrating how to create.

2.4. UPDATING COMPONENTS
All the page components are now introduced, but in some example codes it is apparent that

some lines of code uses double semicolons (;;) instead of a single one (;). In iDev, page

components and other commands require refreshing or updating if their current state or

value has changed to perform the operation completely. In Chapter 2.3.11, the example code

in Fig 2.28 uses the page refresh command. The page refresh command in that example is

used to update the page when to show or hide the draw component circledrw. The page

refresh command (;;) updates the state of the page being displayed on the TFT module, so

that the page components that have a different state from before is updated e.g. when to

show or hide components. Basically, the page refresh command is used if the developer

wants to change the page component’s state visually. The use of page refresh is applied and

fully utilised by the page style parameter update. If update = all, then all the page

components and other iDev components (refers to other components that is created by the

developer such as variables, functions or buffers etc…) are updated i.e. everything in the

page is redrawn. On the other hand, if update = changed then only the page components and

other iDev components that have been changed are updated. An iDev developer should

learn to use the page refresh command efficiently to improve his/her iDev project’s loading

time and the page components and other iDev components to be updated accordingly. The

efficient use of the page refresh command is demonstrated below. There will be two

example codes below which will be compared. The part of the code with the page refresh

command is highlighted.

2012 iDev Programming Guide Itron

Austin Barlis

50

Fig 2.35 This example code demonstrates the proper of use of the page refresh command

As you can see, the page refresh command is only used in the last line for the functions

togfunc and nottogfunc; the page is only refreshed once when the appropriate functions are

called.

//FILENAME: TU480a.mnu

LIB(togofflib,"SDHC/togoff.bmp"); //

LIB(togonlib,"SDHC/togon.bmp"); //

VAR(togvar,0,U8); //

STYLE(mypagestyle,Page) //

{

update = changed; //

back = white; //

}

STYLE(myimagestyle,Image) //

{

maxX = 150; //

maxY = 50; //

}

STYLE(mykeystyle,Key) //

{

debounce = 30; //

action = d; //

}

PAGE(mypage,mypagestyle) //

{

POSN(240,135); //

KEY(togglekey,istogfunc,150,50,mykeystyle); //

IMG(togoffbut,togofflib,myimagestyle); //

IMG(togonbut,togonlib,myimagestyle); //

HIDE(togonbut);

}

FUNC(istogfunc) //

{

IF(togvar = 0?[RUN(togfunc);]:[RUN(nottogfunc);]);

//

}

FUNC(togfunc) //

{

HIDE(togoffbut); //

SHOW(togonbut); //

LOAD(togvar,1);; //

}

FUNC(nottogfunc) //

{

HIDE(togonbut); //

SHOW(togonbut); //

LOAD(togvar,0);; //

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

51

Fig. 2.36 This example code shows the improper use of the page refresh command

The code in Fig 2.36 demonstrates improper use of the page refresh command. Although

each line of code in the functions togfunc and nottogfunc are changing the state of the page

components and iDev components, it is not needed to place a page refresh command in each

one to update the page appropriately. Placing a page refresh command redraws all the page

components and iDev components. So in the example above, the page is refreshed three

times effectively every time the functions are called; this is unnecessary. The loading times

would not be noticeable because the example code above does not have a lot of page

components but an iDev project that has loads of page components and have improper use

of page refresh can significantly increase loading times of pages. The correct usage of the

// FILENAME: TU480a.mnu

LIB(togofflib,"SDHC/togoff.bmp"); //

LIB(togonlib,"SDHC/togon.bmp"); //

VAR(togvar,0,U8); //

STYLE(mypagestyle,Page) //

{

update = changed; //

back = white; //

}

STYLE(myimagestyle,Image) //

{

maxX = 150; //

maxY = 50; //

}

STYLE(mykeystyle,Key) //

{

debounce = 30; //

action = d; //

}

PAGE(mypage,mypagestyle) //

{

POSN(240,135); //

KEY(togglekey,istogfunc,150,50,mykeystyle); //

IMG(togoffbut,togofflib,myimagestyle); //

IMG(togonbut,togonlib,myimagestyle); //

HIDE(togonbut);

}

FUNC(istogfunc) //

{

IF(togvar = 0?[RUN(togfunc);]:[RUN(nottogfunc);]);

//

}

FUNC(togfunc) //

{

HIDE(togoffbut);; //

SHOW(togonbut);; //

LOAD(togvar,1);; //

}

FUNC(nottogfunc) //

{

HIDE(togonbut);; //

SHOW(togonbut);; //

LOAD(togvar,0);; //

}

SHOW(mypage); //

2012 iDev Programming Guide Itron

Austin Barlis

52

page refresh command may not be obvious at this point because it is based entirely on what

the developers want to achieve. To improve on using the page refresh command, it may be

worth practicing with some example code that uses the SHOW and HIDE commands and

experimenting.

2.5. PAGE COMPONENTS MANIPULATION
Page components can be manipulated by the use of iDev commands: SHOW, HIDE and DEL.

The definitions of each of these commands are basically in their name, i.e. SHOW command

shows or displays components, HIDE command hides components etc… These iDev

commands aid the developer in manipulating iDev components to be specifically tailored to

suit their project’s needs.

2.5.1. SHOW
This command reveals page or page components (definition of page components

can be found in the Glossary-Chapter 10) in iDev. This command places the selected

page on the top (visible) layer of the screen. In almost all of the example codes

above, the SHOW command is used to display the page called mypage, without this

command the TFT module the page created would not appear. In the future, a

developer is always going to use the SHOW command to display his/her iDev

project’s main page. Note that the maximum allowable parameters in iDev are 16,

so the maximum number of pages or page components that can be included inside

a SHOW command is 16. The SHOW command can also be used to enable or disable

interrupts in iDev. Interrupts are introduced properly in Chapter 4.7.

SHOW command format:

SHOW(Page name or page component name);

SHOW command format for multiple page components:

SHOW(Page name1/component name1,Page name2/component name2…);

HIDE command format to disable interrupts:

HIDE(Interrupt name1, Interrupt name2…);

Fig. 2.37 Example code demonstrating the usage of the SHOW command

The SHOW command can be used to display multiple pages if the size of the page is

smaller than the screen i.e. a popup page. If the page is the same size as the screen

then only one page can be displayed at a time. There are no limitations on how

many pages and page components can be displayed. There are reserved names in

iDev that is used for page navigation:

SHOW(PREV_PAGE) – shows the page that was launched before the current

displayed page

SHOW(THIS_PAGE) – refresh or update the current displayed page

//FILENAME: TU480a.mnu

SHOW(mypage); //

SHOW(mypagecomponent); //

SHOW(mypage1,mypage2,mypage3); //

SHOW(mypagecomponent1,mypageocomponent2,mypagecomponent3);

//

SHOW(myinterrupt1,myinterrupt2); //

2012 iDev Programming Guide Itron

Austin Barlis

53

The use of SHOW command is regularly used with the refresh command because it

updates a page component’s state but a refresh command is not always required.

Key components are invisible components so the use of SHOW command would not

display anything on the screen but instead it enables the key component selected.

2.5.2. HIDE
HIDE command is used to choose which pages or page components not to display.

This command is basically the opposite of the SHOW command. When a page or

page component selected to be hidden is still showing on the screen but then the

page is refreshed then the selected page or page component will disappear from

the module’s view/screen. Similar to the SHOW command, the maximum number

of pages or page components that can be hidden in a single HIDE command is 16.

Lastly the HIDE command can also be used to enable and disable interrupts.

Interrupts are introduced properly in Chapter 4.7.

HIDE command format:

HIDE(Page name or page component name);

HIDE command format for multiple page components:

HIDE(Page name1/component name1,Page name2/component name2…);

HIDE command format to disable interrupts:

HIDE(Interrupt name1, Interrupt name2…);

//FILENAME: TU480a.mnu

HIDE(mypage); //

HIDE(mypagecomponent); //

HIDE(mypage1,mypage2,mypage3); //

HIDE(mypagecomponent1,mypageocomponent2,mypagecomponent3);

//

HIDE(myinterrupt1,myinterrupt2); //

Fig. 2.38 Example code demonstrating the usage of the HIDE command

Similar to the SHOW command, when using HIDE usually a page refresh command is

used to display the changes of the state of the selected page or page components

to hide. Since key components are not visible on the display then hiding a key

component simply disables it.

2.5.3. DEL
This command is used to iDev components created by the developer that are stored

in the memory (SDRAM). If a page or page component that is currently displayed on

the screen is selected to be deleted then they will remain visible until the page is

refreshed. The DEL command is mainly used for large iDev projects where memory

allocation is of importance. The use of DEL command is an equivalent of deleting

items in Microsoft Windows OS. Also in Windows the deleted items go into the

recycling bin and is only truly deleted once the recycling bin has been emptied, in

iDev the iDev components is only truly deleted to free up memory when the

command RESET(DELETED); is used (non-operational). A maximum of 16 iDev

components can be deleted in a single DEL command.

2012 iDev Programming Guide Itron

Austin Barlis

54

DEL command format:

DEL(iDev component name);

DEL command format for multiple iDev components:

DEL(iDev component name1,iDev component name2…);

//FILENAME: TU480a.mnu

DEL(myiDevcomponent);

DEL(myiDevcomponent1,myiDevcomponent2,myiDevcomponent3);

Fig. 2.39 Example code to show how to use the DEL command

2.5.4. UPDATE STYLE – LOAD
As stated in the other chapters, the STYLE command controls the features of the

page and page components. There could be an instance whereby the developer

would like to change a certain aspect of the page component when a button is

touched. An example would be the colour of a draw component shape can be

changed using the LOAD command with the dot operator.

LOAD command format to update styles:

LOAD(Style name.Parameter,New Parameter Value);

The LOAD command can be used to perform different tasks but for updating styles

then the command format stated above can be used. The example code below uses

this command format to update and change the draw component shape’s colour.

Fig. 2.40 Screen shot to show what will be displayed when the GREEN button is

pressed

circledrw

greenkey

redkey

2012 iDev Programming Guide Itron

Austin Barlis

55

Fig. 2.41 Screen shot to show what will be displayed when the RED button is pressed

LIB command format for multiple transformations:

LIB(Library image name, "Source/Filename?transformation1&transformation2..");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2..], X, Y, Key style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style);

IMG command format for image already stored in iDev Library:

IMG(Image component name, Library Image name, Image Style);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

LOAD command format to update styles

LOAD(Style name.Parameter,New Parameter Value);

}

circledrw

greenkey

redkey

2012 iDev Programming Guide Itron

Austin Barlis

56

SHOW command format:

SHOW(Page name or page component name);

//FILENAME: TU480a.mnu

LIB(greenblib,"SDHC/greenbox.bmp"); //

LIB(redblib,"SDHC/redbox.bmp"); //

STYLE(mypagestyle,Page) //

{

update = changed; //

back = white; //

}

STYLE(myfontAscii16,Text) //

{

font = Ascii16; //

size = 1; //

col = white; //

maxRows = 1; //

maxLen = 24; //

}

STYLE(myimagestyle,Image) //

{

maxX = 150; //

maxY = 50; //

}

STYLE(mycirclestyle,Draw) //

{

type = c; //

maxX = 100; //

maxY = 100; //

width = 8; //

back = green; //

col = grey; //

curRel = CC; //

}

STYLE(mykeystyle,Key) //

{

debounce = 30; //

action = d; //

curRel = CC; //

}

PAGE(mypage,mypagestyle) //

{

POSN(250,95); //

DRAW(circledrw,120,100,mycirclestyle); //

POSN(100,50); //

KEY(greenkey,[LOAD(mycirclestyle.back,green);;],100,50,mykeystyle);

//

IMG(greenbut,greenblib,myimagestyle); //

TEXT(greentxt,"GREEN", myfontAscii16); //

POSN(+0,+100); //

KEY(redkey,[LOAD(mycirclestyle.back,red);;],100,50,mykeystyle);

//

IMG(redbut,redblib,myimagestyle); //

TEXT(redtxt,"RED", myfontAscii16); //

}

SHOW(mypage); //

Fig. 2.42 Example code demonstrating the use of the load command dot operator to

update page component’s style parameter

2012 iDev Programming Guide Itron

Austin Barlis

57

The example code in Fig 2.42 creates two buttons which have separate actions: the

green button changes the colour of the draw component to green when pressed

and the red button changes the colour to red. The changes are achieved using the

LOAD command dot operator format. When styles are updated, visible changes

usually occur so this means that a page refresh (;;) is needed to display the correct

changes on the screen.

2.6. FUNCTIONS
Function is an important aspect in all programing languages. The use of functions enables the

developer to group certain lines of code into a unit, which can then be commanded from

other parts of the program. The use of functions makes programming easier and more

efficient because it enabled the developer to perform a number of tasks just by calling a

function. Functions that have been predefined before can be demanded or called in any

parts of the iDev project by using the RUN command. Functions in iDev have two parts

namely: Function Header and Function Body. The Function Header contains the function

name that a developer assigns; this is helpful for identification of appropriate functions in

other parts of the code. The Function Body contains codes that perform certain tasks for the

function’s purpose. In iDev, functions can be nested into each other with a maximum of 12

times i.e. functions can be called within a function within a function and so on… for 12 times.

The iDev commands IF, RUN, INT and KEY requires a function as a parameter in their

command formats and sometimes inline functions can be used. In cases where function is

only going to be use once and not elsewhere, inline functions may be appropriate.

RUN command format:

RUN(Function Name);

RUN command format with Inline Function:

RUN([Function contents]);

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

Inline Function command format :

In the function parameter of the iDev command

[Function contents]

//FILENAME: TU480a.mnu

RUN(togfunc); //RUN command usage

FUNC(togfunc) //Function togfunc without inline

{

HIDE(togoffbut); //

SHOW(togonbut); //

LOAD(togvar,1);; //

}

RUN([HIDE(togoffbut); SHOW(togonbut); LOAD(togvar,1);;]);

//Function togfunc with inline using RUN command

Fig. 2.43 Example code to show the difference of functions with or without inline and usage of

RUN command

2012 iDev Programming Guide Itron

Austin Barlis

58

The example code in Fig 2.42 clearly demonstrates the difference between functions with or

without inline commands and how the RUN command is used with inline functions. In iDev,

the maximum amount of parameters per command allowed is 16 i.e. the maximum amount

of commands inside a bracket that can either be separated by a comma (,) or a semi colon (;)

is 16. This means that the maximum amount of commands in an inline function is 16. Both

ways of using functions will achieve the purpose of the function but efficient use of functions

is based on its purpose. If the developer can anticipate that the function will be used more

than once in the iDev project then functions without inline commands would be more

suitable. On the contrary, if the developer knows that the function will definitely be only

used once then the function with inline commands should be used. The RUN command can

also be used to send iDev commands through an interface. The required iDev commands that

are sent through an interface can be stored in a text variable first then the commands are

processed and sent by using the RUN command.

Fig. 2.44 Example code demonstrating how iDev commands are sent through an interface by

using the RUN command

2.7. LOOP
Loops are used to repeat specified actions a number of times in a page. The LOOP command

in iDev can only be used inside a PAGE or a FUNCTION. A loop can be nested up to 12 times

i.e. a loop can be called within a loop within a loop within a loop so on… for 12 times. Similar

to other iDev command formats, the LOOP command has a Loop Header that contains the

name and the duration. The duration parameter dictates the number of times the commands

or actions in the loop is repeated. The duration values can be from 1-65000 or if the loop is

required to run constantly then the text FOREVER is used as a value of the duration

parameter. The Loop Body holds the actions and commands that require being repeated. As

with other programming languages there are ways to create conditional loops in iDev by

using the EXIT command. The EXIT command can be used as a terminator of a loop itself or

to terminate a specified loop.

LOOP command format:

Loop Header

LOOP(Loop name, Loop duration)

Loop Body

{

Loop contents…

}

//FILENAME: TU480a.mnu

PAGE(mypage,mypagestyle)

//RUN command sent through an interface in a page

{

POSN(100,50); //

KEY(greenkey,[LOAD(cmd,"LOAD(RS2,\\22Hello\\22);");],100,50,mykeystyle);

//

IMG(greenbut,greenblib,myimagestyle); //

POSN(+0,+100); //

KEY(redkey,[RUN(cmd);],100,50,mykeystyle); //

IMG(redbut,redblib,myimagestyle); //

}

2012 iDev Programming Guide Itron

Austin Barlis

59

EXIT command format:

EXIT();

EXIT command format for a specific loop

EXIT(Loop name);

Fig. 2.45 Loop command usage example in a page or function

Like in any other languages like C, an equivalent of ‘while’ loops in iDev is achieved by the

use of the IF command with a condition and an action that ends the loop as shown below.

The IF command is explained thoroughly in Chapter 3.4 of this guide.

Fig. 2.46 Example code to demonstrate how to create loops with conditions

The example code above creates a counter that goes on until the variable myvar1 reaches 90

then the loop myloop is terminated. The conditional loop only works when a loop is in a

function not when it is in a page.

2.8. NAVIGATION BETWEEN PAGES (LINKING)
Most iDev projects that a developer would create use more than 1 page. It is important to

link these pages together to enable navigation for the user. The example code in Fig 2.50

links all the three pages together using SHOW and HIDE command.

//FILENAME: TU480a.mnu

FUNC(myfunc) //LOOP command in a function

{

 LOOP(myloop,FOREVER) //

 {

 LOAD(mydrawstyle.col,black); //

 }

}

PAGE(mypage,mypagestyle) //LOOP command in a page

{

POSN(240,120); //

TEXT(mytext,"Hello",myAscii32font); //

 LOOP(myloop,3) //

 {

 LOAD(myAscii32font.size,4); //

 LOAD(myAscii32font.col,black); //

 }

}

//FILENAME: TU480a.mnu

FUNC(loopfunc) //

{

 LOOP(myloop,FOREVER) //

 {

 CALC(myvar1,myvar1,3,"+"); //

 IF(myvar1=90?[exit(myloop);]); //

 }

}

2012 iDev Programming Guide Itron

Austin Barlis

60

Fig. 2.47 Screen shot to show the page homepg

Fig. 2.48 Screen shot to show the page redpg

Fig. 2.49 Screen shot to show the page bluepg

nextbox,

nextkey

backbox,

backkey

nextbox2,

nextkey2

backbox2,

backkey2

2012 iDev Programming Guide Itron

Austin Barlis

61

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

STYLE command format inherit:

Style Header

STYLE(New Style name, Style name inherit)

Style Body

{

new style parameter 1 = new style value 1;

new style parameter 2 = new style value 2;

new style parameter 3 = new style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2..], X, Y, Key style);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

SHOW command format:

SHOW(Page name or page component name);

}

2012 iDev Programming Guide Itron

Austin Barlis

62

Fig. 2.50 Example code to showing how three pages are linked together to provide user

navigation

//FILENAME: TU480a.mnu

STYLE(homepgst,Page) //

{

update = changed; //

back = green; //

}

STYLE(redpgst,homepgst) //

{

back = red; //

}

STYLE(bluepgst,homepgst) //

{

back = blue; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = white; //

maxRows = 1; //

maxLen = 24; //

}

STYLE(boxdrwst,Draw) //

{

type = b; //

maxX = 100; //

maxY = 50; //

width = 3; //

back = grey; //

col = white; //

}

PAGE(homepg,homepgst) //

{

POSN(240,136); //

KEY(nextkey,[SHOW(redpg);],100,50,TOUCH); //

DRAW(nextbox,100,50,boxdrwst); //

TEXT(nexttxt, "Press me",Ascii16txst); //

}

PAGE(redpg,redpgst) //

{

POSN(240,136); //

TEXT(redtxt, "Second Page",Ascii16txst); //

POSN(50,25); //

KEY(backkey,[SHOW(homepg);],100,50,TOUCH); //

DRAW(backbox,100,50,boxdrwst); //

TEXT(backtxt, "Back",Ascii16txst); //

POSN(430,25); //

KEY(nextkey2,[SHOW(bluepg);],100,50,TOUCH); //

DRAW(nextbox2,100,50,boxdrwst); //

TEXT(nexttxt2, "Next",Ascii16txst); //

}

PAGE(bluepg,bluepgst) //

{

POSN(240,136); //

TEXT(bluetxt, "Third Page",Ascii16txst); //

POSN(50,25); //

KEY(backkey2,[SHOW(PREV_PAGE);],100,50,TOUCH); //

DRAW(backbox2,100,50,boxdrwst); //

TEXT(backtxt2, "Back",Ascii16txst); //

}

SHOW(homepg); //

2012 iDev Programming Guide Itron

Austin Barlis

63

The maximum amount of pages that can be created in iDev depends upon the TFT amount of

page components in a page, module size and ram. In this guide, the TFT module size that

have been used as an example is a 4.3” TFT module hence the filename TU480a.mnu. The

bigger the module’s screen size is (5.7” and 7.0”), the more ram is needed to display a page.

This means that bigger modules have less maximum pages allowed. The main limiting factor

is the amount of page components and iDev components in a page e.g. the more images,

images or even animation is in a page, the more ram is needed to display the page. This

emphasises the importance of memory allocation when creating iDev projects.

3. MANIPULATING DATA
In iDev, data handling is accomplished by the use of iDev commands. Data manipulation is crucial in

almost all iDev projects as this widens the capabilities of the developer’s iDev project. There is also a

capability of storing the previous value of data in EEPROM and this value can then be accessed in other

parts of the iDev project.

3.1. DATA STORAGE
Like in all other languages data is stored by the use of variables. In iDev, variables have styles

that can be altered depending on its purpose. Also different data types can be stored and

accessed as variables in iDev.

3.1.1. VARIABLE DATA STYLE
STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

Variable Data Styles

Parameter Expected Values Definition

type U8 data type for unsigned 8 bit integer = 0 to 255
(default)

U16 data type for unsigned 16 bit integer = 0 to 65,535

U32 data type for unsigned 32 bit integer= 0 to
4,294,967,295

S8 data type for signed 8 bit integer = -128 to 127

S16 data type for signed 16 bit integer = -32,768 to
32,767

S32 data type for signed 32 bit integer = -2,147,483,648
to 2,147,483,647

TEXT data type to store text strings

FLOAT data type for float with higher resolution – up to 17
decimal places, used for numbers that require high
degrees of accuracy/decimal places

2012 iDev Programming Guide Itron

Austin Barlis

64

POINTER pointer to use for page components

 FILE used to create file object variables (see Chapter 7)

length 1 to 8192 for text data, specify the maximum length that can
be stored (default = 32)

decimal 0 to 17 for float, specify the number of decimal places
(default = 2)

format d RTC format for day: day of month with leading
zeros = 01-31 (default = disabled)

j RTC format for day: day of month without leading
zeros = 1-31

S RTC format for day: ordinal suffix for day of month
= st, nd, rd, th (usage explained in Chapter 6)

F RTC format for month: full textual representation
of month = January-December

m RTC format for month: numeric representation of
month with leading zeros = 01-12

M RTC format for month: short textual representation
of month with three letters = Jan-Dec

n RTC format for month: numeric representation of
month without leading zeros = 1-12

Y RTC format for year: full numeric representation of
year with 4 digits = 1900-2099

y RTC format for year: two digit representation of
year = 00-99

a RTC format for time: lowercase ante meridiem and
post meridiem = am, pm

A RTC format for time: uppercase ante meridiem and
post meridiem = AM, PM

g RTC format for time: 12-hour format of hour
without leading zeros = 1-12

G RTC format for time: 24-hour format of hour
without leading zeros = 0-23

h RTC format for time: 12-hour format of hour with
leading zeros = 01-12

H RTC format for time: 24-hour format of hour with
leading zeros = 00-23

i RTC format for time: format of minutes with
leading zeros = 00-59

s RTC format for time: format of zeros = 00-59

location SDRAM or RAM specify to store data in SDRAM (default)

EEPROM specify to store data in EEPROM (see Chapter 8.5)

Fig. 3.1 Table to describe different variable data style parameters and expected

values

The variable data style is applied in iDev using the same style command format.

Sometimes in iDev, variables that are used don’t require the other data style

parameters to be altered. There are built-in data styles in iDev that are ready to use

without the need to create a style if the built in parameters are appropriate for the

variable’s purpose.

Built in Style type location decimal length

U8 U8 SDRAM

N/A U8E U8 EEPROM

U16 U16 SDRAM

2012 iDev Programming Guide Itron

Austin Barlis

65

U16E U16 EEPROM

U32 U32 SDRAM

U32E U32 EEPROM

S8 S8 SDRAM

S8E S8 EEPROM

S16 S16 SDRAM

S16E S16 EEPROM

S32 S32 SDRAM

S32E S32 EEPROM

PTR POINTER SDRAM

PTRE POINTER EEPROM

TXT TEXT SDRAM
N/A

32

TXTE TEXT EEPROM 32

FLT1 FLOAT SDRAM 1

N/A

FLT1E FLOAT EEPROM 1

FLT2 FLOAT SDRAM 2

FLT2E FLOAT EEPROM 2

FLT3 FLOAT SDRAM 3

FLT3E FLOAT EEPROM 3

FLT4 FLOAT SDRAM 4

FLT4E FLOAT EEPROM 4

Fig. 3.2 Table to describe the built-in variable data styles in iDev

3.1.2. DECLARING VARIABLES
In iDev, variables consist of the variable name, starting/default value and style. The

variable names used in iDev must start with a letter or “_”. The use of a leading

underscore is NOT recommended and usual naming convention uses lower case

letters when naming variables. Like in any other programming languages variables

are declared in the beginning of the main menu file. Values stored in a variable can

be stored in the EEPROM which stores the last stored value even though the

module is turned off (non-volatile memory). The stored value is accessed as a

starting value when the module is powered on again.

VAR command format:

VAR(Variable name, Starting value, Variable Style);

VAR command format for text variable:

VAR(Variable name, "Starting text value", Variable Style);

Fig. 3.3 Example code exhibiting the use of the VAR command

Sometimes the developer might change the variable style from an EEPROM stored

//FILENAME: TU480a.mnu

STYLE(flt15st,Data) //

{

type = FLOAT; //

decimal = 15; //

}

VAR(myvar1,1,U8E); //

VAR(myvar2,1,S8); //

VAR(myvar3,0,flt15st); //

VAR(mytextvar,"first",TXT); //

2012 iDev Programming Guide Itron

Austin Barlis

66

variable to an SDCARD stored variable (i.e. change from U8 to U8E); this can cause

error/s in the iDev project. The error is caused because the variable name is stored

and allocated in the EEPROM of the module and when powered on, the same

variable is retrieved from the same location. Since the variable is not located in the

EEPROM anymore, an error occurs. There are two ways in fixing this issue. First, the

developer can use the RESET(EEPROM) command to clear the EEPROM. It is

important to place the RESET(EEPROM) command before the variables are stated in

the main menu file for this method to work properly. This reset is a one-time

process so after the module is powered on once the RESET(EEPROM) command can

be removed. Another way is not as efficient as the previous method; the developer

can change the name of the variable with the data style location being altered. This

means that in the whole iDev project, the developer has to rename when the

variable is used. This method is inefficient because the variable is still stored in the

EEPROM but it isn’t accessed; this causes some EEPROM storage space being used

even though it is not needed.

3.1.3. TEXT VARIABLE UPDATE – LOAD
The variable set as a text can also be used as a text component of which the value

can be updated depending on the contents of the text variable. This is achieved by

using the LOAD command. Multiple text variables can also be loaded in one text

variable using the LOAD command. The text data source can either be raw text

enclosed in quotation marks or text data variable.

LOAD command format to change stored text data:

LOAD(Destination variable name, Text data source);

LOAD command format to change stored text data from multiple sources:

LOAD(Destination variable name, Text data source1, Text data source2…);

An example code is created to manipulate the text component in the page by using

the LOAD command to change the contents of the text component. Three text

variables were created namely, myvar, myvar1 and myvar2 each containing

different text components.

hlwrldkey,

hlwrldbox

txtloadkey,

txtloadbox

vartxt

2012 iDev Programming Guide Itron

Austin Barlis

67

Fig. 3.4 Screen shot showing what will be displayed before the buttons are pressed

Fig. 3.5 Screen shot to demonstrate what will be shown when the Hello world button

is pressed

Fig 3.6 Screen shot to demonstrate what will be shown when the Load text button is

pressed

hlwrldkey,

hlwrldbox

txtloadkey,

txtloadbox

vartxt

hlwrldkey,

hlwrldbox

txtloadkey,

txtloadbox

vartxt

2012 iDev Programming Guide Itron

Austin Barlis

68

VAR command format for text variable:

VAR(Variable name, "Starting text value", Variable Style);

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

}

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

LOAD command format to change stored text data:

LOAD(Destination variable name, Text data source);

LOAD command format to change stored text data from multiple sources:

LOAD(Destination variable name, Text data source1, Text data source2…);

SHOW(Page name or page component name);

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

2012 iDev Programming Guide Itron

Austin Barlis

69

Fig. 3.7 Example code to demonstrate how text data can be manipulated by using

the LOAD command

From the example code in Fig 3.7, the functions hlwrldfunc and txtloadfunc has the

line TEXT(vartxt,mytxtvar);;. This line is important to update the text component

vartxt appropriately and display the correct updated text data when those functions

are demanded. If that line of code isn’t present then the text component vartxt

would not be updated on the display although the contents have been changed.

It is important to remember that the text data style has a length parameter which

determines the maximum amount of text data that can be stored in a text variable.

In the example above the default length parameter of 32 is enough so it isn’t

//FILENAME: TU480a.mnu

VAR(mytxtvar,"load text here",TXT); //

VAR(mytxtvar1,"mytxtvar1",TXT); //

VAR(mytxtvar2," with mytxtvar2",TXT); //

STYLE(homepgst,Page) //

{

back = green; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = white; //

maxRows = 1; //

maxLen = 32; //

}

STYLE(boxdrwst,Draw) //

{

type = b; //

maxX = 100; //

maxY = 50; //

width = 3; //

back = grey; //

col = white; //

}

PAGE(homepg,homepgst) //

{

POSN(100,70); //

KEY(hlwrldkey,hlwrldfunc,100,50,TOUCH); //

DRAW(hlwrldbox,100,50,boxdrwst); //

TEXT(hlwrldtxt,"Hello world",Ascii16txst); //

POSN(+0,170); //

KEY(txtloadkey,txtloadfunc,100,50,TOUCH); //

DRAW(txtloadbox,100,50,boxdrwst); //

TEXT(txtloadtxt,"Load text",Ascii16txst); //

POSN(240,130);

TEXT(vartxt,mytxtvar,Ascii16txst); //

}

FUNC(hlwrldfunc) //

{

LOAD(mytxtvar,"Hello world"); //

TEXT(vartxt,mytxtvar);; //

}

FUNC(txtloadfunc) //

{

LOAD(mytxtvar,mytxtvar1,mytxtvar2); //

TEXT(vartxt,mytxtvar);; //

}

SHOW(homepg); //

2012 iDev Programming Guide Itron

Austin Barlis

70

changed, so the length parameter can be changed as appropriate. Another factor to

remember is the maximum length in the text component style works similarly to

the length parameter in text data styles. Again the value of the maxLen parameter

is changed in the example code above to accommodate all the text data in the text

component vartxt.

3.1.4. INTEGER/FLOAT VARIABLE – LOAD
The LOAD command can be used to change the value stored in an integer or float

data variable. The number that can be stored in an integer or float variable depends

on the type i.e. if a U8 integer variable type is used then the variable can hold any

integer value from 0-255. For better guidance regarding the different types of

integer and float variables that can be used in iDev, refer to Chapter 3.1.1 of this

guide.

LOAD command format to change stored integer/ float data:

LOAD(Destination variable name, Int/float data source);

LOAD command format to change stored integer/float data from multiple sources:

LOAD(Destination variable name, Int/float data source1, Int/float data source2…);

A common use of the integer and float variables is setting flags. In programming,

flags refer to fixed values that help the developer indicate the state, mode or

behaviour if his/her code i.e. its purpose is to indicate when a point in the

processing has been reached. An example below uses a ‘flag’ to determine whether

the key component has been pressed or not, and processes are carried out

depending on the state of the flag.

Fig. 3.8 Screen shot to demonstrating when toggle button state is pressed (ON)

togkey,

togbox

2012 iDev Programming Guide Itron

Austin Barlis

71

Fig. 3.9 Screen shot to demonstrating when toggle button state is pressed (OFF)

VAR command format:

VAR(Variable name, Starting value, Variable Style);

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

}

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

togkey,

togbox

2012 iDev Programming Guide Itron

Austin Barlis

72

{

Function contents…

}

LOAD command format to change stored integer/ float data:

LOAD(Destination variable name, Int/float data source);

SHOW command format:

SHOW(Page name or page component name);

HIDE command format:

HIDE(Page name or page component name);

//FILENAME: TU480a.mnu

VAR(togvar,0,U8); //

STYLE(homepgst,Page) //

{

back = green; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = white; //

maxRows = 1; //

maxLen = 32; //

}

STYLE(boxdrwst,Draw) //

{

type = b; //

maxX = 100; //

maxY = 50; //

width = 3; //

back = grey; //

col = white; //

}

PAGE(homepg,homepgst) //

{

POSN(240,135); //

KEY(togkey,istogfunc,100,50,TOUCH); //

DRAW(togbox,100,50,boxdrwst); //

TEXT(ontxt,"ON",Ascii16txst); //

TEXT(offtxt, "OFF",Ascii16txst); //

HIDE(offtxt); //

}

FUNC(istogfunc) //

{

IF(togvar = 0?[RUN(togfunc);]:[RUN(nottogfunc);]);

//

}

FUNC(togfunc) //

{

HIDE(ontxt); //

SHOW(offtxt); //

LOAD(togvar,1);; //

}

FUNC(nottogfunc) //

{

HIDE(offtxt); //

SHOW(ontxt); //

LOAD(togvar,0);; //

}

SHOW(homepg); //

Fig. 3.10 Example code demonstrating how integer data variables are manipulated

2012 iDev Programming Guide Itron

Austin Barlis

73

From the example code in Fig 3.8, the state of the key component is determined by

an IF statement. The IF command is explained thoroughly in Chapter 3.4 of this

guide so for now if it should be ignored to avoid confusion. The U8 integer variable

togvar is used as a ‘flag’, when its value is 0 then the function togfunc is undertaken

which effectively shows the text component offtxt and hides the text component

ontxt but on the other hand when the value is 1, then the function nottogfunc is

undertaken which does the opposite. The LOAD command is used inside the

togfunc and nottogfunc functions, to enable the toggle button to work in switching

states indefinitely. If these lines of code are removed, then the toggle button will

only work once. The starting value of a variable determines the starting state of the

‘flag’ so it is important to take that into account when using ‘flags’ in an iDev

project. For better understanding of the LOAD and VAR commands then it might be

worth trying to change the starting state of the toggle button in the example code

above from ‘OFF’ to ‘ON’.

In iDev, text data can be assigned to an integer or float variable by the use of LOAD

command. This can be useful in storing calculations from a text component.

Fig. 3.11 Load command example demonstrating text data contents moved to an

integer or float variable

In the example above, the variable mytextvar is analysed until a non-valid numeric

value is found i.e. if mytextvar contains "1689 pounds", then the integer 1689 is

stored in the integer variable myintvar provided that the variable type can

accommodate this value (has to be U16 or U32). The second example simply

combines the text data into one integer value and stores in the variable myintvar. In

effect, the contents of myintvar are then changed to 14523.

3.1.5. POINTER
Pointer is a certain variable type that is used to locate another variable. The use of

pointers allows the developer to perform data related operations quicker. In iDev,

pointers can be used to point to other pointers, iDev components and page

components but in most cases pointers are used to direct to another variable.

VAR command format for pointers:

VAR(Pointer variable name>"Shared destination value", Pointer type);

The pointer variable command format consists of three parts. The pointer variable

name refers to the unique name that the pointer is given when declared. The

shared destination value refers to the common part of the final destination value.

Lastly, the pointer type is used to determine whether to store the pointer in SDRAM

or EEPROM. The LOAD command with pointers has a different format from the

other LOAD command formats introduced so far.

//FILENAME: TU480a.mnu

LOAD(myintvar,mytextvar); //transfer text variable to int variable

LOAD(myintvar,"145","23"); //transfer text data to int variable

2012 iDev Programming Guide Itron

Austin Barlis

74

LOAD command format for using pointers:

LOAD(Pointer variable name>"Shared destination value", Destination Identifier);

The LOAD command is used to assign or change the current pointer value by the

parameter destination identifier.

Fig. 3.12 Screen shot to show what would be expected from the screen when the

English button is pressed

Fig. 3.13 Screen shot showing what to expect from the screen when the French

button is pressed

frnkey,

frnbox

engkey,

engbox

txt1

txt2

frnkey,

frnbox

engkey,

engbox

txt1

txt2

2012 iDev Programming Guide Itron

Austin Barlis

75

VAR command format:

VAR(Variable name, Starting value, Variable Style);

VAR command format for text variable:

VAR(Variable name, "Starting text value", Variable Style);

VAR command format for pointers:

VAR(Pointer variable name>"Shared destination value", Pointer type);

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

}

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

LOAD command format for using pointers:

LOAD(Pointer variable name>"Shared destination value", Destination Identifier);

SHOW command format:

SHOW(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

76

Fig. 3.14 Example code to show how pointer variables are used and manipulated in

the iDev language

The example code in Fig 3.14 uses pointers to display appropriate text depending

on which button is pressed. The two buttons created switches the language of the

text component from English to French and vice-versa. The text data are stored in

//FILENAME: TU480a.mnu

VAR(lang,0,U8); //

VAR(ln10,"the quick brown fox jumps",TXT); //

VAR(ln11,"les renard brun rapide saute",TXT);

//

VAR(ln20,"over the lazy dog",TXT); //

VAR(ln21,"sur le chien paresseux",TXT); //

VAR(lnptr1>"",PTR); //

VAR(lnptr2>"",PTR); //

STYLE(homepgst,Page) //

{

back = green; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = white; //

maxRows = 1; //

maxLen = 32; //

}

STYLE(boxdrwst,Draw) //

{

type = b; //

maxX = 100; //

maxY = 50; //

width = 3; //

back = grey; //

col = white; //

}

FUNC(langfunc) //

{

LOAD(lnptr1>"ln1",lang); //

LOAD(lnptr2>"ln2",lang); //

TEXT(txt1,lnptr1); //

TEXT(txt2,lnptr2); //

}

PAGE(homepg,homepgst) //

{

POSN(240,135); //

TEXT(txt1,lnptr1,Ascii16txst); //

POSN(+0,+20); //

TEXT(txt2,lnptr2,Ascii16txst); //

POSN(120,40); //

KEY(frnkey,[LOAD(lang,1);RUN(langfunc);;],100,50,TOUCH);

//

DRAW(frnbox,100,50,boxdrwst); //

TEXT(frntxt,"French",Ascii16txst); //

POSN(380,+0); //

KEY(engkey,[LOAD(lang,0);RUN(langfunc);;],100,50,TOUCH);

//

DRAW(engbox,100,50,boxdrwst); //

TEXT(engtxt,"English",Ascii16txst); //

}

RUN(langfunc); //

SHOW(homepg); //

2012 iDev Programming Guide Itron

Austin Barlis

77

text variables. The pointers are used to display the appropriate text on the screen.

The function langfunc contains LOAD commands that manipulate the pointers to

direct the correct text variable for the text component. The diagram below best

explains the method of pointers in the iDev language. It is important to keep on

referring to the example code in Fig 3.12 when looking at the diagram in Fig. 3.13

for a better understanding.

Fig. 3.15 Diagram to explain pointers in iDev

The text components txt1 and txt2 in the example code in Fig 3.14 uses a pointer

variable as a source i.e. text component txt1 takes its text data from pointer

variable lnptr1, so if lnptr1 points to a text variable containing “hello” then the text

component txt1 would display “hello” on the screen and the same with txt2 and

lnptr2; this is evident in 1 from the diagram. At 2 from the diagram, the pointer

variable lnptr1 and lnptr2 followed by the common destination value (ln1 and ln2)

are used to choose which text data to display. Shared destination value refers to the

common portion of the final destination value; it is highlighted yellow in the

diagram above to demonstrate why the word ‘shared’ is used. If the developer

wants to display the text data contained in the text variable ln11 (in the example

above, ln10, ln11, ln20, ln21 are text variables), then the value of the variable lang

has to be 1 as seen at 3. The same method is initiated when accessing the other text

variables. The diagram above explains what the function langfunc does before it

updates the text components on the screen. Also it is important to note that the

pointer variable itself does not determine the final destination value but the

destination identifier as well. The destination identifier from the example above is

the variable lang and this variable value is changed when the key component frnkey

or engkey is pressed. This can be seen as one of the inline commands (LOAD(lang,1)

for frnkey and LOAD(lang,0) for engkey) that are set when the key component is

created in the example above. The destination identifier variable lang is an

unsigned 8-bit integer variable so the final destination value for the pointer can be

ln10 to ln1255, but it is also possible to use a destination identifier variable that is a

text variable. If the variable lang is changed to a text variable and the inline

commands in the key components are changed to LOAD(lang,a) or LOAD(lang,b)

then the possible final destination values would be ln1a, ln1b, ln2a, ln2b as opposed

to ln10, ln11, ln20, ln21. Although it is possible to use text destination identifier

variable it is recommended to use integer variables as destination identifiers as this

allows calculations to be carried out.

lnptr2>"ln2"

lnptr1>"ln1"

ln10

ln11

ln21

ln20

txt1

txt2

lang = 1

lang = 0

lang = 1

lang = 0

1 2 3

2012 iDev Programming Guide Itron

Austin Barlis

78

In iDev, pointers to pointers are supported as well. The similar command format is

used to apply this.

Fig. 3.16 Example code showing how pointer to pointer is applied in iDev

Looking at the example above, the text component mytext is set to have the text

data contained in pointer myptr1 but myptr1 is set to be pointing at the variable

myintvar; in effect the text component mytext displays 1234 on the page. The LOAD

command in the example above is used to change the contents of myptr3 to 4321,

since the myptr3 is pointed at myptr2; myptr2 pointing at myptr1 and lastly myptr1

to myintvar then the effective final destination of the pointer myptr3 is myintvar.

The contents of the variable myintvar are changed from 1234 to 4321. There is no

limit on how many times pointer to pointer instances can occur in iDev, the pointer

variables are checked until a non-pointer value is found.

3.1.6. ARRAY
If the developer requires multiple values to be grouped into one unit then arrays

become useful e.g. amount of rainfall each day in a one-week period. Instead of

creating a variable to store each value of rainfall for different days, all the values

can be stored in one array. Consequently, four arrays can represent the amount of

rainfall per day in approximately a month (approximately four weeks in a month so

four arrays are used and so 28 days for 28 values). In iDev, arrays up to 4

dimensions are supported. The maximum number of elements or size that an array

can accommodate per dimension is 32,767. Currently the types of data that can be

stored in an array are integers but future support for text data will be released. For

better comprehension, each type of array is explained in separate parts.

One Dimensional Array explained

VAR command format for one-dimensional arrays:

VAR(Array name, Array initial values, Data type, Size1D);

In iDev, all array elements are defined by using zero-based indexing. Elements are

the contents of an array where values are stored. The array element values are

changed by the use of LOAD command. The LOAD command is explained further in

Chapter 3.3 of this guide. The values can either be changed at the same time or only

one element alone. The element value to be defined in an array can either be an

integer value or an integer variable. Up to 15 elements can be changed at a time in

a one-dimensional array because of the 16-parameter limit in iDev.

//FILENAME: TU480a.mnu

VAR(myintvar,1234,U16); //

VAR(myptr1>"myintvar",PTR); //

VAR(myptr2>"myptr1",PTR); //

VAR(myptr3>"myptr2",PTR); //

TEXT(mytext,myptr1); //

LOAD(myptr3,4321); //

2012 iDev Programming Guide Itron

Austin Barlis

79

LOAD command format to change single element in one-dimensional array:

LOAD(Array name.1D, New element value/variable);

LOAD command format to transfer single element to variable:

LOAD(Variable name, Array name.1D);

LOAD command format to change all elements with a single value in one-

dimensional array:

LOAD(Array name, Single value);

LOAD command format to change multiple elements in one-dimensional array:

LOAD(Array name,1
st

 element value,2
nd

 element value, 3
rd

 element value…);

LOAD command format to pass array elements to serial interface/text variable or

another array:

LOAD(Destination of array elements, Array source name);

LOAD command format to pass all array elements to text component:

TEXT(Text component, Array source name);

LOAD command format when array elements come from serial interface (serial

buffer):

LOAD(Array name, Serial interface source);

Fig. 3.17 Example to show how elements in a one-dimensional array are

manipulated in different conditions

The array myarray and myarray2 is created as a 4 element array with unsigned 8-bit

integer data and initial values of 0. It is evident from the example code above how

simple it is to change specific elements in an array. When multiple arrays are

changed and some of the elements in the array weren’t specified then the

element’s current value wouldn’t be replaced.

//FILENAME: TU480a.mnu

//One-dimensional array is declared

VAR(myintvar,4,U8); //

VAR(mytxtvar,"154",TXT); //

VAR(myarray,0,U8,4); //

VAR(myarray2,0,U8,4); //

//Inside a Page or Function

TEXT(mytext,"hello",mytxtst); //

LOAD(myarray.0,1); //change 1
st
 element of array value to 1

LOAD(myarray.2,36); //change 2
nd
 element of array value to 36

LOAD(myarray.3,myintvar); //change 3
rd
 element value of array to myintvar

LOAD(myintvar,myarray.1); //Transfer single element to variable

LOAD(myarray,52); //Change all elements with a single value

LOAD(myarray,52,48,27,53); //Change multiple element value

LOAD(RS2,myarray); //Transfer array elements to serial interface

LOAD(mytext,myarray); //Transfer array elements to text component

LOAD(mytxtvar,myarray); //Transfer array elements to text variable

LOAD(myarray2,myarray); //Transfer array elements to another array

LOAD(myarray,RS2);

//Transfer contents from serial interface to array (serial buffer)

2012 iDev Programming Guide Itron

Austin Barlis

80

The line of code: LOAD(myarray,52,48,27,53) and the table below describes how

array elements are assigned when multiple elements are changed.

1
st

 array element 2
nd

 array element 3
rd

 array element 4
th

 array element

myarray.0 myarray.1 myarray.2 myarray.3

52 48 27 53

Fig. 3.18 Table describing how elements are assigned when multiple elements are

changed using the LOAD command

If the developer requires using arrays as a serial buffer, there are loads of factors

that decide how the data received is divided when transferred to the elements.

Factors such as size of each packet of data received, type of encoding or size of

array are the typical factors than can affect data allocation to the array. The

interfaces in iDev are introduced properly in Chapter 4.

Fig. 3.19 Screen shot to show is displayed before the buttons are pressed

Fig. 3.20 Screen shot demonstrating the changes in the screen when the squared

button is pressed

sqrkey,

sqrbox

cubkey,

cubbox

sqrkey,

sqrbox

cubkey,

cubbox

txt1 txt2 txt3 txt4

txt1 txt2 txt3 txt4

2012 iDev Programming Guide Itron

Austin Barlis

81

Fig. 3.21 Screen shot demonstrating the changes in the screen when the cubed

button is pressed

sqrkey,

sqrbox

cubkey,

cubbox

txt1 txt2 txt3 txt4

2012 iDev Programming Guide Itron

Austin Barlis

82

VAR command format for one-dimensional arrays:

VAR(Array name, Array initial values, Data type, Size1D);

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

}

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

LOAD command format to change multiple elements in one-dimensional array:

LOAD(Array name,1
st

 element value,2
nd

 element value, 3
rd

 element value…);

LOAD command format to pass all array elements to text component:

TEXT(Text component, Array source name);

SHOW command format:

SHOW(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

83

Fig. 3.22 Example code to show how one-dimensional arrays are used in iDev

//FILENAME: TU480a.mnu

VAR(myarray,0,U8,4); //

STYLE(homepgst,Page) //

{

back = green; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = white; //

maxRows = 1; //

maxLen = 32; //

}

STYLE(boxdrwst,Draw) //

{

type = b; //

maxX = 100; //

maxY = 50; //

width = 3; //

back = grey; //

col = white; //

}

PAGE(homepg,homepgst) //

{

POSN(100,136); //

TEXT(txt1,"1",Ascii16txst); //

POSN(+80,+0); //

TEXT(txt2,"2",Ascii16txst); //

POSN(+80,+0); //

TEXT(txt3,"3",Ascii16txst); //

POSN(+80,+0); //

TEXT(txt4,"4",Ascii16txst); //

POSN(120,40); //

KEY(sqrkey,sqrfunc,100,50,TOUCH); //

DRAW(sqrbox,100,50,boxdrwst); //

TEXT(sqrtxt,"Squared",Ascii16txst); //

POSN(380,+0); //

KEY(cubkey,cubfunc,100,50,TOUCH); //

DRAW(cubbox,100,50,boxdrwst); //

TEXT(cubtxt,"Cubed",Ascii16txst); //

}

FUNC(sqrfunc) //

{

LOAD(myarray,1,4,9,16); //

TEXT(txt1,myarray.0); //

TEXT(txt2,myarray.1); //

TEXT(txt3,myarray.2); //

TEXT(txt4,myarray.3);; //

}

FUNC(cubfunc) //

{

LOAD(myarray,1,8,27,64); //

TEXT(txt1,myarray.0); //

TEXT(txt2,myarray.1); //

TEXT(txt3,myarray.2); //

TEXT(txt4,myarray.3);; //

}

SHOW(homepg); //

2012 iDev Programming Guide Itron

Austin Barlis

84

The code in Fig 3.22 is created to produce two buttons that changes the text

components displayed to a squared or cubed value. An array named myarray with 4

elements, unsigned 8 bit integer data with initial values of 0 is created. The

‘buttons’ are created in the same way as how it is created in previous example

codes but just the text component is changed to an appropriate one to signify the

button’s purpose. When either one of the buttons is pressed then the functions to

change the transfer the elements from the array to the text components are carried

out. Looking at the function sqrfunc, there is a LOAD command which changes the

elements contained in the one-dimensional array to 1, 4, 9 and 16. The rest of the

commands in the function are added to change the text in the text components to

the contents of the array. The same method is applied to the other function.

Two-dimensional Array explained

VAR command format for two-dimensional arrays:

VAR(Array name, Array initial values, Data type, Size1D,Size2D);

Two-dimensional arrays in iDev follow the similar arrangement with the one

dimensional arrays. In iDev it would be easier to think of multidimensional arrays as

group of sets; the first dimension is the highest level set and the second dimension

is the second level set i.e. the elements in the second dimension is a subset of the

elements in the first dimension. A two dimensional array can be pictured as a table

with rows as the 1
st

 dimension and column as the 2
nd

 dimension. Since another

dimension is introduced, the command format has one added parameter to define

the second dimension of an array. The LOAD command is used to manipulate

elements in a two-dimensional array just like in the one-dimensional array. Up to 15

elements can be changed at a time in a two-dimensional array because of the 16-

parameter limit in iDev.

LOAD command format to change single element in two-dimensional array:

LOAD(Array name.1D.2D, New element value/variable);

LOAD command format to transfer single element to variable:

LOAD(Variable name, Array name.1D.2D);

LOAD command format to change multiple elements in 1
st

 dimension of a two-

dimensional array:

LOAD(Array name.1D,1
st

 element value,2
nd

 element value,3
rd

 element value…);

LOAD command format to pass array elements in the specified 1
st

 dimension to

serial interface/ text variable or another array:

LOAD(Destination of array elements, Array source name.1D);

LOAD command format to pass all array elements in the specified 1
st

 dimension to

text component:

TEXT(Text component, Array source name.1D);

LOAD command format when all array elements come from serial interface (serial

buffer):

LOAD(Array name, Serial interface source);

LOAD command format when 1
st

 dimension array elements come from serial

interface (serial buffer):

LOAD(Array name.1D,Serial interface source);

2012 iDev Programming Guide Itron

Austin Barlis

85

Fig. 3.23 Example to show how elements in a two-dimensional array are

manipulated in different conditions

The similarities between manipulation of elements in a one-dimensional and two-

dimensional array are evident from the code in Fig 3.23. The main difference is the

addition of another parameter for the second dimension of an array but the rest of

the layout of the command format is kept the same. Looking at where the array

myarray in Fig 3.23 is declared it can be assumed that the array size is 3 by 5.

Looking at the example showing how to change multiple element values in a

specified 1D of the array above, when both LOAD commands are processed then

the resultant changes to the array are best described in the table below.

1D and 2D dimensions 2D (0) 2D (1) 2D (2) 2D (3) 2D (4)

1D (0) 25 79 2 87 62

1D (1) 0 0 0 0 0

1D (2) 52 28 17 73 97

Fig. 3.24 Table to help in visualising what a two-dimensional array is in iDev

In two-dimensional arrays, it is possible to say that 1D is the rows in a table and 2D

is the column. In iDev, multiple elements can only be changed at once (one

command) by specifying the first dimension (row) of an array or all the elements in

//FILENAME: TU480a.mnu

//Two-dimensional array is declared

VAR(myintvar,0,U8); //

VAR(mytxtvar,"24",TXT); //

VAR(myarray,0,U8,3,5); //

VAR(myarray2,0,U8,3,5); //

//Inside a Page or Function

TEXT(mytext,"hello",mytxtst); //

LOAD(myarray.0.2,25); //

LOAD(myarray.2.1,86); //

LOAD(myarray.1.2,myintvar); //

LOAD(myintvar,myarray.1.3); //Transfer single element to variable

LOAD(myarray.2,52,28,17,73,97);

//Change multiple element values in specified 1
st
 dimension of the array

LOAD(myarray.0,25,79,2,87,62);

//Change multiple element values in specified 1
st
 dimension of the array

LOAD(RS2,myarray.1);

// Transfer array elements in specified 1
st
 dimension of the array to serial

interface

LOAD(mytext,myarray.2);

//Transfer array elements in specified 1
st
 dimension of the array to text

component

LOAD(mytxtvar,myarray.0);

//Transfer array elements in specified 1
st
 dimension of the array to text

variable

LOAD(myarray2,myarray.1);

//Transfer array elements in specified 1
st
 dimension of the array to another

array

LOAD(myarray,RS2);

// Transfer contents from serial interface to array (serial buffer)

LOAD(myarray.1D,RS2);

// Transfer contents from serial interface to the specified 1
st
 dimension in

the array (serial buffer)

2012 iDev Programming Guide Itron

Austin Barlis

86

the array. If the developer requires the elements in a specific second dimension

(column) changing, then it has to be done one by one. Referring to the table, the

example has changed all the elements in 1D(0) (1
st

 row) by specifying the 1
st

dimension address in the LOAD command. The same is applied when all the

elements in 1D(2)(3
rd

 row) is changed. The elements in 1D(1)(2
nd

 row) have the

value 0 because the initial value of the array is set to 0. The current value of the

elements stored in an array is kept until a new value is loaded into it. When a whole

array is loaded, the elements are sent by hierarchal order:

myarray.0.0,myarray.0.1,myarray.0.2,…,myarray.1.0,myarray.1.1,myarray.1.2,…,my

array.2.0,myarray.2.1,myarray.2.2,…,myarray.2.4

Three-dimensional array explained

VAR command format for three-dimensional arrays:

VAR(Array name, Array initial values, Data type, Size1D,Size2D,Size3D);

The arrays with three dimensions have the similar command format to that of the

two-dimensional arrays; the only difference is an extra parameter. The three-

dimensional array is more difficult to visualise because of the extra dimension. A

three-dimensional array can be seen as group of sets with three levels; the 1
st

dimension is the highest level set and the 3
rd

 dimension is the lowest level set. In

other words, the elements in the 3
rd

 dimension are a subset of the elements in the

2
nd

 dimension and the elements in the 2
nd

 dimension are a subset of the elements

in the 1
st

 dimension. Due to the addition of another dimension, more situations

would be possible when manipulating a three dimensional array. Up to 15 elements

can be changed at a time in a three-dimensional array because of the 16-parameter

limit in iDev. All the added possible situations that use the LOAD command are

included underneath.

LOAD command format to change single element in three-dimensional array:

LOAD(Array name.1D.2D.3D, New element value/variable);

LOAD command format to transfer single element to variable:

LOAD(Variable name, Array name.1D.2D.3D);

LOAD command format to change multiple elements in specified 2nd dimension of

a three-dimensional array:

LOAD(Array name.1D.2D,1
st

 element value,2
nd

 element value,3
rd

 element value…);

LOAD command format to pass array elements in the specified 2
nd

 dimension to

serial interface/text variable or another array:

LOAD(Destination of array elements, Array source name.1D.2D);

LOAD command format to pass all array elements to text component:

TEXT(Text component, Array source name.1D.2D);

LOAD command format when all array elements come from serial interface (serial

buffer):

LOAD(Array name, Serial interface source);

LOAD command format when 2
nd

 dimension array elements come from serial

interface (serial buffer):

LOAD(Array name.1D.2D,Serial interface source);

2012 iDev Programming Guide Itron

Austin Barlis

87

Fig. 3.25 Example to show how elements in a two-dimensional array are

manipulated in different conditions

These added situations build upon the first and second dimensional array command

formats, so it is important to remember that what can be applied in the first and

second dimension arrays can also be applied to the three-dimensional array but not

the other way around.

//FILENAME: TU480a.mnu

//Three-dimensional array is declared

VAR(myintvar,0,U8);

VAR(mytxtvar,"24",U8);

VAR(myarray,0,U8,2,3,3);

VAR(myarray2,0,U8,2,3,3);

//Inside a Page or Function

TEXT(mytext,"hello",mytxtst);

LOAD(myarray.0.2.0,25); //Change single element value

LOAD(myarray.1.1.2,86); //

LOAD(myarray.1.2.2,myintvar); //

LOAD(myintvar,myarray.1.2.2); //Transfer single element to variable

LOAD(myarray.1.2,52,28,17,);

//Change multiple element values in specified 2
nd
 dimension of the array

LOAD(myarray.0.1,25,79,2,);

//Change multiple element values in specified 2
nd
 dimension of the array

LOAD(RS2,myarray.1.2);

//Transfer array elements in specified 2
nd
 dimension of the array to serial

interface

TEXT(mytext,myarray.0.1);

//Transfer array elements in specified 2
nd
 dimension of the array to text

component

LOAD(mytxtvar,myarray.0.0);

//Transfer array elements in specified 2
nd
 dimension of the array to text

variable

LOAD(myarray2,myarray.1.2);

//Transfer array elements in specified 2
nd
 dimension of the array to another

array

LOAD(myarray,RS2);

//Transfer contents from serial interface to array (serial buffer)

LOAD(myarray.1.2,RS2);

//Transfer contents from serial interface to the specified 2
nd
 dimension in

the array (serial buffer)

2012 iDev Programming Guide Itron

Austin Barlis

88

Fig. 3.26 Diagram to show arrangement of elements in three-dimensional arrays

The diagram above uses the array created in Fig 3.25 which is a 2 by 3 by 3

array with unsigned 8 bit integer and initial values of 0. It is easier to apply the

analogy about arrays as group of sets of elements; the subset arrangement of the

myarray

element (0)

element (1)

element (0)

element (1)

element (2)

element (0)

element (1)

element (2)

element (0)

element (1)

element (2)

element (0)

element (1)

element (2)

element (0)

element (1)

element (2)

element (0)

element (1)

element (2)

element (0)

element (1)

element (2)

element (0)

element (1)

element (2)

1D (2) 2D (3) 3D (3)

2012 iDev Programming Guide Itron

Austin Barlis

89

elements is clearly indicated by the arrows in the diagram. The elements in a three-

dimensional array are sent by hierarchal order as well:

myarrray.0.0.0,myarray.0.0.1,myarray.0.0.2,…,myarray.1.0.0,myarray.1.0.1,myarra

y.1.0.2,…,myarray.1.2.2

It is evident from the example usage in Fig 3.25 that multiple elements of up to two

dimensions can be manipulated by stating the dimensions in the command. An

example is created to show a typical application of three-dimensional arrays in iDev.

Fig. 3.27 Screen shot showing the screen before any of the buttons are pressed

Fig. 3.28 Screen shot showing the changes when the English button is pressed

mesbox

key1,

keybox1

key2,

keybox2

key3,

keybox3

key4,

keybox4

engkey,

engbox

frnkey,

frnbox

mesbox

key2,

keybox2

key3,

keybox3

key4,

keybox4

engkey,

engbox

frnkey,

frnbox

key1,

keybox1

2012 iDev Programming Guide Itron

Austin Barlis

90

Fig. 3.29 Screen shot showing the changes when the thank you button is pressed

Fig. 3.30 Screen shot showing the changes when the French button

Fig. 3.31 Screen shot to showing the changes when the au revoir button is pressed

mesbox

key2,

keybox2

key3,

keybox3

key4,

keybox4

engkey,

engbox

frnkey,

frnbox

key1,

keybox1

mesbox

key2,

keybox2

key3,

keybox3

key4,

keybox4

engkey,

engbox

frnkey,

frnbox

key1,

keybox1

mesbox

key2,

keybox2

key3,

keybox3

key4,

keybox4

engkey,

engbox

frnkey,

frnbox

key1,

keybox1

2012 iDev Programming Guide Itron

Austin Barlis

91

VAR command format:

VAR(Variable name, Starting value, Variable Style);

VAR command format for text variable:

VAR(Variable name, "Starting text value", Variable Style);

VAR command format for three-dimensional arrays:

VAR(Array name, Array initial values, Data type, Size1D,Size2D,Size3D);

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2], X, Y, Key style);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

}

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

Inline Function command format :

In the function parameter of the iDev command

[Function contents]

LOAD command format to change multiple elements in specified 2nd dimension of

a three-dimensional array:

LOAD(Array name.1D.2D,1
st

 element value,2
nd

 element value,3
rd

 element value…);

SHOW command format:

SHOW(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

92

//FILENAME: TU480a.mnu

VAR(lang,0,U8); //

VAR(myarray,0,U8,2,4,10); //

VAR(heltxt,"hello\\00",TXT); //

VAR(byetxt,"goodbye\\00",TXT); //

VAR(tnxtxt,"thank you\\00",TXT); //

VAR(weltxt,"welcome\\00",TXT); //

VAR(bontxt,"bonjour\\00",TXT); //

VAR(aurtxt,"au revoir\\00",TXT); //

VAR(mertxt,"merci\\00",TXT); //

VAR(acctxt,"accueil\\00",TXT); //

STYLE(homepgst,Page) //

{

back = red; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = white; //

maxRows = 1; //

maxLen = 32; //

}

STYLE(Ascii16bltxst,Ascii16txst) //

{

col = black; //

}

STYLE(boxdrwst,Draw) //

{

type = b; //

maxX = 100; //

maxY = 50; //

width = 3; //

back = grey; //

col = white; //

}

STYLE(mesboxdrwst,boxdrwst) //

{

back= white; //

col = black; //

maxX = 200; //

}

PAGE(homepg,homepgst) //

{

POSN(240,40); //

DRAW(mesbox,200,50,mesboxdrwst); //

TEXT(mestxt,"message here",Ascii16bltxst); //

POSN(80,120); //

KEY(key1,keyfunc1,100,50,TOUCH); //

DRAW(keybox1,90,50,boxdrwst); //

TEXT(keytxt1,"1st key",Ascii16txst); //

POSN(+110,+0); //

KEY(key2,keyfunc2,100,50,TOUCH); //

DRAW(keybox2,90,50,boxdrwst); //

TEXT(keytxt2,"2nd key",Ascii16txst); //

POSN(+110,+0); //

KEY(key3,keyfunc3,100,50,TOUCH); //

DRAW(keybox3,90,50,boxdrwst); //

TEXT(keytxt3,"3rd key",Ascii16txst); //

POSN(+110,+0); //

KEY(key4,keyfunc4,100,50,TOUCH); //

DRAW(keybox4,90,50,boxdrwst); //

TEXT(keytxt4,"4th key",Ascii16txst); //

2012 iDev Programming Guide Itron

Austin Barlis

93

Fig. 3.32 Example code to show how three-dimensional arrays are used in iDev

The example above uses three-dimensional arrays to manipulate text data to be

displayed on the screen. The usual application of this is in pages where translation

to different languages is required. The code from Fig 3.32 uses a 2 by 4 by 10 array

to store letters that is utilised to display appropriate text data. The 1
st

 dimension is

applied to control the language between English and French. Hence, the 1
st

dimension is set to 2. The 2
nd

 dimension handles the words and keys (buttons) on

the screen, there are four words and buttons that are created so the 2
nd

 dimension

is set to 4. Lastly, the 3
rd

 dimension is used to store the characters of each word.

The maximum amount of characters that is used is 9 but since a character

POSN(180,+80); //

KEY(engkey,[LOAD(lang,0);RUN(engfunc);],100,50,TOUCH);

//

DRAW(engbox,90,50,boxdrwst); //

TEXT(engtext,"English",Ascii16txst); //

POSN(+110,+0); //

KEY(frnkey,[LOAD(lang,1);RUN(frnfunc);],100,50,TOUCH);

//

DRAW(frnbox,90,50,boxdrwst); //

TEXT(frntext,"French",Ascii16txst); //

}

FUNC(engfunc) //

{

LOAD(myarray.lang.0,%t%heltxt); //

TEXT(keytxt1,%t%myarray.lang.0); //

LOAD(myarray.lang.1,%t%byetxt); //

TEXT(keytxt2,%t%myarray.lang.1); //

LOAD(myarray.lang.2,%t%tnxtxt); //

TEXT(keytxt3,%t%myarray.lang.2); //

LOAD(myarray.lang.3,%t%weltxt); //

TEXT(keytxt4,%t%myarray.lang.3); //

}

FUNC(frnfunc) //

{

LOAD(myarray.lang.0,%t%bontxt); //

TEXT(keytxt1,%t%myarray.lang.0); //

LOAD(myarray.lang.1,%t%aurtxt); //

TEXT(keytxt2,%t%myarray.lang.1); //

LOAD(myarray.lang.2,%t%mertxt); //

TEXT(keytxt3,%t%myarray.lang.2); //

LOAD(myarray.lang.3,%t%acctxt); //

TEXT(keytxt4,%t%myarray.lang.3);; //

}

FUNC(keyfunc1) //

{

TEXT(mestxt,%t%myarray.lang.0);; //

}

FUNC(keyfunc2) //

{

TEXT(mestxt,%t%myarray.lang.1);; //

}

FUNC(keyfunc3) //

{

TEXT(mestxt,%t%myarray.lang.2);; //

}

FUNC(keyfunc4) //

{

TEXT(mestxt,%t%myarray.lang.3);; //

}

SHOW(homepg); //

2012 iDev Programming Guide Itron

Austin Barlis

94

terminator is required the resulting length of the 3
rd

 dimension is set to 10. A

character terminator is important in iDev as it notifies TFT module’s programmer

(interpreter) that it is the end of the string in an array. These criteria are used to

determine the length of each dimension in an array. Hence, the size of the array is 2

by 4 by 10. There example code creates 6 key components (buttons) and a message

box. Four of the buttons are used to display different messages in English and

French and the other two buttons are created to translate the language between

the two. The message box’s contents change depending on which key is pressed

and language. When the key component engkey is pressed then the value of

variable lang is changed to 0, so the set of words that are in English in the array is

accessed. The function engfunc is executed as well which assigns the suitable text

data to the key components on the screen. From the example code, it is observable

that ‘%t%’ is present when the array source and element value parameters are

stated. This syntax(%t%) is used so that text data can be stored in an array. Since

arrays can only store single value per slot, each letter for a certain word is stored

per slot i.e. if the word ‘hello’ is going to be stored in the array then the first slot

myarray.0.0.0 stores the letter ‘h’, second slot myarray.0.0.1 the letter ‘e’, third slot

myarray.0.0.2 the letter ‘l’ and so on... Unfortunately arrays in iDev do not support

text data yet so this method to store text data is a temporary fix. The same method

is used for the French language which occurs when the key component frnkey is

pressed. The diagram below describes how elements and words are accessed in the

array myarray.

Fig. 3.33 Diagram to demonstrate how words are chosen from a three-dimensional

array in the example code in Fig 3.32

Note that heltxt,byetxt, tnxtxt,weltxt, bontxt, aurtxt, mertxt and acctxt are all text

variables which are assigned to the array slots to hold each letter. Looking at the

diagram above, the path to access the text data acctxt will be used as an example.

The value of the first dimension is 1, then the value for the second dimension is 3

lang = 0

lang = 1

key1 (0)

key2 (1)

key1 (0)

key3 (2)

key4 (3)

key2 (1)

key4 (3)

key3 (2)

heltxt

byetxt

bontxt

mertxt

acctxt

aurtxt

weltxt

tnxtxt

myarray

2012 iDev Programming Guide Itron

Austin Barlis

95

The resultant ‘address’ of the path is myarray.1.3 which is assigned to contain the

appropriate text data. So when the language is set to French and the button

‘accueil’ is pressed then the method described is carried out to display the correct

text data. The same technique is applied to access and manipulate the other

elements in the array and hence display other messages/text. Screen shots are

taken to demonstrate what changes would be seen on the module screen.

Four-dimensional arrays explained

VAR command format for four-dimensional arrays:

VAR(Array name, Array initial values, Data type,Size1D,Size2D,Size3D,Size4D);

Multi-dimensional arrays have similar command formats in iDev and a clear

structure from one-dimensional, two-dimensional and three-dimensional arrays are

apparent. In a four-dimensional array, the elements in the fourth dimension are

subset of the elements in the third dimension; the elements in the third dimension

are subset elements in the second dimension and lastly the elements in the second

dimension is a subset of the elements in the first dimension. Up to 15 elements can

be changed at a time` in a four-dimensional array because of the 16 parameter limit

in iDev. More situations are now possible because of the added dimension to the

array; these situations are similar to that of the previous examples.

LOAD command format to change single element in three-dimensional array:

LOAD(Array name.1D.2D.3D.4D, New element value/variable);

LOAD command format to transfer single element to variable:

LOAD(Variable name, Array name.1D.2D.3D.4D);

LOAD command format to change multiple elements in specified 3rd dimension of a

three-dimensional array:

LOAD(Array name.1D.2D.3D,1
st

 element value,2
nd

 element value…);

LOAD command format to pass array elements in the specified 3
rd

 dimension to

serial interface/text variable or another array:

LOAD(Destination of array elements, Array source name.1D.2D.3D);

LOAD command format to pass array elements in the specified 3
rd

 dimension to text

component:

TEXT(Text component, Array source name.1D.2D.3D);

LOAD command format when all array elements come from serial interface (serial

buffer):

LOAD(Array name, Serial interface source);

LOAD command format when 3
rd

 dimension array elements come from serial

interface (serial buffer):

LOAD(Array name.1D.2D.3D,Serial interface source);

2012 iDev Programming Guide Itron

Austin Barlis

96

Fig. 3.34 Example to show how elements in a four-dimensional array are

manipulated in different conditions

It is obvious that the command format and structure of the four-dimensional array

is similar to the other multi-dimensional array. Elements in a four dimensional array

are sent in a hierarchal order (which is the same with the others):

myarray0.0.0.0,myarray.0.0.0.1,myarray.0.0.0.2,…,myarray.0.0.1.0,myarray.0.0.1.1,

myarray.0.0.1.2,…,myarray.1.1.1.2. For a better understanding on the hierarchal

order of the elements in a four-dimensional array myarray of size 2 by 2 by 2 by 3 is

created. Two diagrams representing a four-dimensional array is created.

//FILENAME: TU480a.mnu

//Two-dimensional array is declared

VAR(myintvar,0,U8); //

VAR(mytxtvar,"24",TXT); //

VAR(myarray,0,U8,2,2,2,3); //

VAR(myarray2,0,U8,2,2,2,3); //

//Inside a Page or Function

TEXT(mytext,"hello",mytxtst); //

LOAD(myarray.0.1.0.2,25); //

LOAD(myarray.1.1.1.1,86); //

LOAD(myarray.1.0.1.0,myintvar); //

LOAD(myintvar,myarray.1.1.0.2); //Transfer single element to variable

LOAD(myarray.1.1.0,52,28,17);

// Change multiple element values in specified 3
rd
 dimension of the array

LOAD(myarray.0.0.1,25,79,2);

//Change multiple element values in specified 3
rd
 dimension of the array

LOAD(RS2,myarray.1.0.1);

//Transfer array elements in specified 3
rd
 dimension of the array to serial

interface

TEXT(mytext,myarray.0.1.0);

//Transfer array elements in specified 3
rd
 dimension of the array to text

component

LOAD(mytxtvar,myarray.0.1.1);

//Transfer array elements in specified 3
rd
 dimension of the array to text

variable

LOAD(myarray2,myarray.0.0.1);

//Transfer array elements in specified 3
rd
 dimension of the array to another

array

LOAD(myarray,RS2);

//Transfer contents from serial interface to array (serial buffer)

LOAD(myarray.1.1.0,RS2);

//Transfer contents from serial interface to the specified 3
rd
 dimension in

the array (serial buffer)

2012 iDev Programming Guide Itron

Austin Barlis

97

Fig. 3.35 Diagram showing subset representation of four-dimensional arrays in iDev

74(1)

5 (1)

 (1)

20 (1)

 (1)

 (1)

26(2)

58(0)

85 (1)

36 (2)

 (0)

10 (0)

 (1)

17 (0)

19 (1)

57 (2)

 (0)

 (0) 25 (1)

13 (2)

 (1)

myarray

91 (0)

14 (1)

42 (2)

25 (0)

 (1)

 (0)

7 (2)

 (0)

81 (0)

1 (2)

 (0)

 (1)

52 (0)

 (0)

87 (2)

34 (0)

45 (1)

1D (2) 2D (2) 3D (2) 4D (3)

2012 iDev Programming Guide Itron

Austin Barlis

98

myarray of size 2.2.2.3

Fig. 3.36 Diagram showing table representation of four-dimensional arrays in iDev

For better guidance, the diagrams and examples are colour coordinated so that a

beginner developer would be able to visualise four-dimensional arrays easier.

Examples are created below to demonstrate how to access single elements in the

array myarray in diagrams in Fig 3.35 and 3.36.

myarray.0.0.0.0 = 34

myarray.1.0.1.0 = 17

myarray.0.0.1.2 = 1

myarray.0.1.0.1 = 5

myarray.0.1.0.0 = 81

myarray.1.1.0.2 = 26

Four-dimensional arrays are rarely used in iDev projects but it adds flexibility and

capability in some iDev projects that require the use of four dimensions. As

practice, the example code in Fig 3.27 can be modified so another dimension is

added to change another visual feature on the page such as changing the

background colour or even changing the whole page.

3.2. FORMATTING DATA
Data in any programming languages comes in different format such as decimal, hex or float.

These data formats have to be correct so that it can be interpreted appropriately. A typical

usage would be in data transmission, some external modules send data in a certain format so

when the buffer is set in iDev, and it has to be the correct format for the received data to be

properly interpreted. On the other hand, when sending commands to an external module

that is connected through the serial interface then the data format should be appropriate.

VAR command format to apply different data format to value stored:

VAR(Variable name,%Data format%Starting Value, Variable Style);

TEXT command format to apply different data format to text component:

TEXT(Text Component,%Data format%Variable Source, Text Style);

LOAD command format to apply different data format to a destination (serial

interface/variable):

LOAD(Destination,%Data format%Variable Source);

 0 1

 0 1 2 0 1 2

0
0 34 45 87 52 74 1

1 81 5 7 25 14 42

1
0 91 25 13 17 19 57

1 10 20 26 58 85 36

2012 iDev Programming Guide Itron

Austin Barlis

99

Data Format Definition

s decimal integer

h lower case hex

H upper case hex

h1 to h8 lower case hex with a field width where padding used are spaces

H1 to H8 upper case hex with a field width where padding used are spaces

h01 to h08 lower case hex with a field width where padding used are zeros

H01 to H08 upper case hex with a field width where padding used are zeros

f decimal floating point

f1 to f8 decimal floating point with specified number of decimal places

r raw data

Fig. 3.37 Table to show and define different types of iDev data format

This part may be too complicated for beginners in programming so this part is only for

advanced developers that have used the C programming language, so for beginners just use

the basic iDev data format for now. The printf formatting in C can also be applied in iDev.

This is achieved by placing a ‘*’ before the printf command in the data format parameter

enclosed in ‘%’. In iDev, all the Printf Data Format is treated as if it is in C, so the same results

would occur. The command format is then changed to:

VAR command format to apply printf data format to value stored:

VAR(Variable name,%*Printf Data Format %Starting Value, Variable Style);

TEXT command format to apply printf data format to text component:

TEXT(Text Component,%*Printf Data Format %Variable Source, Text Style);

LOAD command format to apply printf data format to a destination (serial

interface/variable):

LOAD(Destination,%*Printf Data Format%Variable Source);

The Printf format in C programming language has its own parameters that are needed to

specify what type of data is required for correct data interpretation. The Printf data format

manipulation gives the developer more options on how they want the data to be used. Some

of the iDev Data formats will have the same result with different combinations of the Printf

Data format.

Printf Data format:

FlagsWidth.PrecisionLengthSpecifier

Flags Definition

- Justify to the left within the given field width (default is right-justify)

+ shows data with a plus or minus sign (default only negative numbers are placed with
minus sign before it)

(space) a blank space is inserted before the data/value

For o, x or X specifiers, the value is preceded with 0,0x or 0X respectively for values
different than zero

For e, E and f specifiers, the written output is forced to contain a decimal point even
if no digits would follow (default, if no digits follow then no decimal point is written)

For g or G specifiers, the same happens with e or E but trailing zeros are not
removed

0 left-pads the number with zeros instead of space, where padding is specified by
width

Fig. 3.38 Definition and Expected values for the flags parameter in printf data format

2012 iDev Programming Guide Itron

Austin Barlis

100

Width Definition

(number)
sets the minimum number of characters to be shown, if data to be displayed is
shorter than this number then the result is padded with blank spaces and the
value is not truncated even if the result is larger

Fig. 3.39 Definition and Expected values for the width parameter in printf data format

.Precision Definition

.(number)

For d, u, i, o, x, X specifiers, the value is set for the minimum number of digits to
be written ,if data to be displayed is shorter than this number then the result is
padded with leading zeros and the value is not truncated even if the result is
larger

For e, E or f specifiers, this value is the number of digits to be displayed after the
decimal point.

For g or G specifiers, the maximum number of significant digits to be displayed

For s, the maximum number of characters to be displayed (default, all characters
are displayed until the character terminator is encountered)

For c, it has no effect

Fig. 3.40 Definition and Expected values for the precision parameter in printf data format

Length Definition

h For d, u, i, o, x, X specifiers, the command is interpreted as a short integer or
unsigned short integer

l

For d, u, i, o, x, X specifiers, the command is interpreted as a long integer or unsigned
long integer

For c or s specifiers, the command is interpreted as a wide character or wide
character string

L For e, E, f, g or G specifiers, the command is interpreted as a long double

Fig. 3.41 Definition and Expected values for the length parameter in printf data format

Specifier Definition

c character

d or i signed decimal integer

u unsigned decimal integer

e lower case scientific notation (exponential)

E upper case scientific notation (exponential)

f decimal floating point

g use the shorter of exponential or decimal floating point in lower case

G use the shorter of exponential or decimal floating point in upper case

o unsigned octal

s string of characters

x lower case unsigned hexadecimal integer

X upper case unsigned hexadecimal integer

Fig. 3.42 Definition and Expected values for the specifier parameter in printf data format

It is crucial to be familiar with different types of data in iDev because it can be guaranteed

that not all data being sent and received in iDev projects using external modules are in the

same data format. An example below demonstrates how to apply different types of data

format to one variable. This one variable is constant and does not change unlike other data

being received but this example would suffice.

2012 iDev Programming Guide Itron

Austin Barlis

101

Fig 3.43 Screen shot to show what would be displayed when the example code in Fig 3.44 is

uploaded

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

VAR command format:

VAR(Variable name, Starting value, Variable Style);

VAR command format to apply different data format to value stored:

VAR(Variable name,%Data format%Starting Value, Variable Style);

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

TEXT command format to apply different data format to text component:

TEXT(Text Component,%Data format%Variable Source, Text Style);

TEXT command format to apply printf data format to text component:

TEXT(Text Component,%*Printf Data Format %Variable Source, Text Style);

}

SHOW command format:

SHOW(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

102

Fig. 3.44 Example code demonstrating how different types of format can be used to

manipulate how data are interpreted in iDev

The example code in Fig 3.44 only uses the TEXT command to interpret data in different

formats but the LOAD command can also be used. The same results should be expected

when the LOAD command is used to set different data formats in iDev.

//FILENAME: TU480a.mnu

STYLE(homepgst,Page) //create a style for homepg

{

back = black; //

}

STYLE(Ascii16txtst,Text) //

{

font = Ascii16; //

col = white; //

maxRows = 1; //

maxLen = 12; //

curRel = LC; //

}

STYLE(flt7,Data) //create style for float variable

{

type = float; //

decimal = 7; //

}

VAR(myintvar,2031,U16); //create U16 variable

VAR(myfltvar,3.1415927,flt7); //create 7 decimal point float variable

VAR(mytxtvar,%s%myintvar,TXT); //store “2031”

VAR(myrawvar,%r%51,U8); //store “51”

PAGE(homepg,homepgst) //

{

POSN(20,10); //

TEXT(mytxt1,mytxtvar,Ascii16txtst); //shows “7ef”

POSN(+0,+18); //

TEXT(mytxt2,%h%myintvar,Ascii16txtst); //shows “7ef”

POSN(+0,+18); //

TEXT(mytxt3,%H%myintvar,Ascii16txtst); //shows “7EF”

POSN(+0,+18); //

TEXT(mytxt4,%h2%myintvar,Ascii16txtst); //shows “7ef”

POSN(+0,+18); //

TEXT(mytxt5,%H8%myintvar,Ascii16txtst); //shows “ 7EF”

POSN(+0,+18); //

TEXT(mytxt6,%h02%myintvar,Ascii16txtst); //shows “7EF”

POSN(+0,+18); //

TEXT(mytxt7,%H08%myintvar,Ascii16txtst); //shows “000007ef”

POSN(+0,+18); //

TEXT(mytxt8,%f%myfltvar,Ascii16txtst); //shows “3.141593”

POSN(+0,+18); //

TEXT(mytxt9,%f4%myfltvar,Ascii16txtst); //shows “3.1416”

POSN(+0,+18); //

TEXT(mytxt10,%f8%myfltvar,Ascii16txtst); //shows “3.14159270”

POSN(+0,+18); //

TEXT(mytxt11,%*e%myfltvar,Ascii16txtst); //shows “3.141593e+00”

POSN(+0,+18); //

TEXT(mytxt12,%*08X%myintvar,Ascii16txtst); //shows “000007EF”

POSN(+0,+18); //

TEXT(mytxt13,%*+d%myintvar,Ascii16txtst); //shows “+2031”

POSN(+0,+18); //

TEXT(mytxt14,%r%myrawvar,Ascii16txtst); //shows “3”

}

SHOW(homepg); //

2012 iDev Programming Guide Itron

Austin Barlis

103

3.3. MOVING AND UPDATING DATA – LOAD
The LOAD command in iDev is a very versatile command. It can be used to copy contents of a

page to a previously defined page. This command is also used in Chapter 2.5.4, where it is

used to update parameters in a previously defined style. Another prominent use of the LOAD

command is changing the values stored in variables as described in Chapter 3.1.3 of this

guide. The LOAD command is also used in controlling pointers in iDev as described in Chapter

3.1.5. Array manipulation also uses the LOAD command as seen in Chapter 3.1.6. Multiple

values can be combined or concatenated by the use of LOAD command as well. Variables,

buffers and text can be combined and the result is copied to a variable or buffer. This allows

text and variables that are joined together to be sent through an interface. Below is a

summary of all the command formats that uses the LOAD command. The LOAD command

formats stated in the previous parts of the guide is also found below, for the arrays, only the

one-dimensional array that uses LOAD command is included below, if LOAD command

format for multi-dimensional array is required then refer to Chapter 3.1.6.

LOAD command formats that have been stated in other parts of the guide:

LOAD command format to update styles:

LOAD(Style name.Parameter,New Parameter Value);

LOAD command format for using pointers:

LOAD(Pointer variable name>"Shared destination value", Destination Identifier);

LOAD command format to apply different data format to a destination (serial

interface/variable):

LOAD(Destination,%Data format%Variable Source);

LOAD command format to apply printf data format to a destination (serial

interface/variable):

LOAD(Destination,%*Printf Data Format%Variable Source);

LOAD command format to change single element in one-dimensional array:

LOAD(Array name.1D, New element value/variable);

LOAD command format to transfer single element to variable:

LOAD(Variable name, Array name.1D);

LOAD command format to change all elements with a single value in one-dimensional array:

LOAD(Array name, Single value);

LOAD command format to change multiple elements in one-dimensional array:

LOAD(Array name,1
st

 element value,2
nd

 element value, 3
rd

 element value…);

LOAD command format to pass array elements to serial interface/text variable or another

array:

LOAD(Destination of array elements, Array source name);

LOAD command format to pass all array elements to text component:

TEXT(Text component, Array source name);

LOAD command format when array elements come from serial interface (serial buffer):

LOAD(Array name, Serial interface source);

New LOAD command format for general application:

LOAD command format to change value of a variable:

LOAD(Destination Variable, New Value/Variable);

LOAD command format to combine/concatenate values or contents of variables and pass the

result to a variable:

LOAD(Text Variable, "New Text"/Text Variable1, " New Text"/ Text Variable2…);

2012 iDev Programming Guide Itron

Austin Barlis

104

LOAD command format to send contents of a variable or a value through an interface:

LOAD(Interface, New Value/Variable);

LOAD command format to send combined/concatenated contents of a text variable or text

data through an interface:

LOAD(Interface, "New Text"/Text Variable1, "New Text"/ Text Variable2,…);

LOAD command format to use a previously defined page as a template for a new page that is

created, page refresh is needed to make changes visible:

LOAD(Destination Page, Previously Defined Page);;

LOAD command format to change specific setup parameters:

LOAD(Setup Name.Parameter, New Parameter Value);

LOAD command format to transfer files from SDHC to on-board NAND flash (used with

FPROG – Chapter 8.3):

LOAD(NAND, "SDHC/Filename");

The LOAD command formats from the previous chapters already have examples on how they

are applied in the same chapter where they are stated, so the example in this chapter would

only show how to use the new LOAD command formats in iDev.

Fig. 3.45 Example code demonstrating how LOAD command is applied in iDev

When combining data and using the LOAD command to transfer it to another variable or

serial interface, it is important to know how data is merged. From the example above, the

line LOAD(mytxtvar, "6",myintvar, "here"); would result in storing the value “62031here” to

the text variable mytxtvar. The same principle is applied when variables are combined with

text data and transferred to a serial interface e.g. from the example above the resultant data

is “1562031”. The setup parameters are changed using the LOAD command and the dot

operator. The size and watchdog parameters should not be changed as this can cause errors

(not implemented)… The setup parameter change can be applied to the following: RS2, RS4,

AS1, AS2, DBG, I2C, SPI, PWM, ADC, KEYIO and SYSTEM. These setups are mostly used to

manipulate settings for the interfaces in iDev. Interfaces are explained in Chapter 4. Lastly,

there is an option in iDev whereby files in an iDev project can be moved from SDHC or serial

interface to the on-board NAND flash. If the source of the file is SDHC then the command

//FILENAME: TU480a.mnu

//Variables to store values are declared

VAR(myintvar,2031,U16); //create U16 variable

VAR(myintdesvar,15,U8); //

VAR(mytxtvar,"text var",TXT); //

//Inside a Page or Function

TEXT(mytext,"hello",mytxtst); //

LOAD(myintdesvar,28); //Replace the contents of variable with a new value

LOAD(mytxtvar,"6",myintvar,"here");

//Combine/concatenate variable with text data and store it in the same variable

LOAD(AS1,myintdesvar); //Transfer the contents of a variable to a serial interface

LOAD(RS2,myintdesvar,"6",myintvar);

//Combine/concatenate variable with text data and transfer it to a serial interface

LOAD(homepg,templatepg);;

//Transfer the contents of a page to another previously defined page

LOAD(RS2.baud,myintvar); //Change the setup parameter to a value from a variable

LOAD(AS1.data,6); //Change the setup parameter to a new value

LOAD(NAND,"SDHC/Functions.mnu");

//Transfer project files from SDHC to NAND flash – used with FPROG commmand

2012 iDev Programming Guide Itron

Austin Barlis

105

parameter is straightforward as seen from the example but if the source is from a serial

interface then there are other parameters to be considered. Transferring files from SDHC or

serial interface to NAND flash requires the use of the FPROG command; this is explained

properly in Chapter 8.1 of this guide.

3.4. COMPARING DATA OR CREATING CONDITIONS – IF
In iDev, IF statements give the developer the capability to control the flow of his/her iDev

project. This allows the developer to manipulate certain parts of his/her code to be executed

based on the user’s input. If the condition stated in the IF statement is true, then a function

is carried out and if false then another function can be called or no action can be

implemented. The functions that are called are obviously specified by the developer. In

programming, the term true and false has a different meaning compared to the literal

meaning of it in the English language. A statement in programming is deemed true when the

result of the evaluation is a nonzero number. On the contrary, a false statement results to

zero. Note that the functions in IF statements use the same command format as the FUNC

command format in iDev, so inline commands can also be applied. In iDev, numeric values

and text strings can be compared in if statements. When comparing data, it is important to

remember that both values to be compared must be of the same type i.e. both must be text

string/numeric values or variables that contain either one. So you cannot compare text string

to a numeric value, which would seem useless anyway. When comparing floating point

number (float variables with maximum of 17 decimal places) the lowest bit is masked before

data is compared. If a floating point variable or value is compared to an integer variable or

value then the integer is treated as if it’s a floating point by padding zeros after the decimal

point (not implemented).

IF command format to create if statements with just one action, note that a Operand1 can be

a variable and Operand2 can be a literal text string or numeric value but both Operands

cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function);

IF command format to create if statements with an else action, note that a Operand1 can be

a variable and Operand2 can be a variable, literal text string or numeric value but both

Operands cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function1:Function2);

Numerical Value/Variable and Boolean Logical Operators for IF statements

Operator Definition
Result: TRUE then
execute Function1

Result: FALSE then
execute Function2

= or == equal to 5 = 5 5 = 7

<> or != not equal to 5 != 2 5 != 5

=- equal to the negative of 5 =- 5 5 =- -5

< less than 5 < 26 5 < 1

> greater than 5 > 3 5 > 21

<= less than or equal to 5 <= 5 5 <= 4

>= greater than or equal to 5 >= 2 5 >= 43

+ sum not equal to zero 5 + 4 5 + -5

- difference not equal to zero 5 - 3 5 - +5

* multiplication not equal to zero 5 * 29 5 * 0

/ division not equal to zero 5 / 2 0 / 5

2012 iDev Programming Guide Itron

Austin Barlis

106

% modulus (remainder of division) not equal to
zero

5 % 4 5 % 5

&& Boolean Logical AND (double ampersand) 5 = 5 && 5 > 1
5 = 5 && 5 =! 5

5 = 7 && 5 <25

|| Boolean Logical OR (double pipe)
5 = 2 || 5 < 16

5 < 1 || 5 >= 21
5 > 2 || 5 = -5

Fig 3.46 Table describing the different operators including Boolean Logical operators used in

comparing numerical values/variables in iDev

All the operators but the Boolean Logical ones from Fig 3.46 are self-explanatory because

they are based on simple mathematical operations. Boolean Logical operators are used in if

statements in most programming languages. Boolean Logical operators have two main types,

namely Boolean Logical AND and Boolean Logical OR. It is not necessary to learn Boolean

algebra to learn the purpose of these two operators basically Boolean Logical AND is used to

determine whether both expressions in the operands are true. Looking at the Boolean

Logical AND example in the table, the condition is deemed true because the first expression

5 = 5 AND the second expression 5 > 1 are true. That is, for the condition to be true then

both expressions have to be true otherwise it’s false. The Boolean Logical OR however is

used to determine if either one of the expressions in the operands are true. From the

example, the condition 5 = 2 || 5 < 16 and 5 > 2 || 5 = -5 are both deemed true because

either one of the expressions in the operands are true. If both expressions in the operands

are false then the whole condition is deemed false. Boolean Logical AND operator is useful

when two expressions in the operands are required to be both true at the same time

whereas the Boolean Logical OR operator is useful when only one expression in the operand

is required to be true.

Bitwise Operators for IF statements

Operator Definition Operation Result

&
Bitwise AND (single
ampersand)

5 (00000101) & 84 (01010100) 4 (00000100) TRUE then
execute Function1

5 (00000101) & 10 (00001010) 0 (00000000) FALSE then
execute Function2

| Bitwise OR (single pipe)

5 (00000101) | 6 (00000110) 7(00000111) TRUE then
execute Function1

0 (00000000) | 0 (00000000) 0(00000000) FALSE then
execute Function2

^ Bitwise exclusive OR

5 (00000101) ^ 210 (11010010) 215(11010111) TRUE
then execute Function1

5 (00000101) ^ 5 (00000101) 0(00000000) FALSE then
execute Function2

Fig. 3.47 Table describing the Bitwise operators used in comparing numerical values/variables

in iDev

2012 iDev Programming Guide Itron

Austin Barlis

107

For beginner developers that are unfamiliar with bitwise operators, then this is a summary

on what it is used for. The Bitwise operators are not as straight forward as the Boolean

Logical operators as it involves calculation of binary values. The numbering system that is

used everywhere is decimal which uses the symbols 0 through 9, binary values however only

uses the symbols 0 and 1. Reading in binary is usually started from the right, and then

continued to left until the last symbol 1.

Decimal Numbering

100(10
2
) 10(10

1
) 1(10

0
) Calculation Decimal Binary

0 2 5 0(100) + 2(10) + 5(1) = 25 25 0001101

1 0 9 1(100) + 0(10) + 9(1) = 109 109 1101101

1 1 7 1(100) + 1(10) + 7(1) = 117 117 1110101

0 1 3 0(100) + 1(10) + 3(1) = 13 13 0001101

Fig. 3.48 Table demonstrating how numbers are ‘read’ in decimal numbering system

The most commonly used numbering system is decimal; it is what people use today to

quantify objects. The table above describes how the decimal numbering system is calculated;

each place value (100, 10, 1) can hold any of the symbols from 0 to 9. Place value in decimal

is in multiples/powers of 10, each subsequent place value starting from the right is multiplied

by 10. The place value is then multiplied by the corresponding symbol (0 to 9) to get the final

decimal value as evident from the examples in the table above.

Binary numbering

64(2
6
) 32(2

5
) 16(2

4
) 8(2

3
) 4(2

2
) 2(2

1
) 1(2

0
) Calculation Binary Decimal

0 0 1 1 0 0 1
0(64) + 0(32) +
1(16) + 1(8) + 0(4)
+ 0(2)+ 1(1) = 25

0001101 25

1 1 0 1 1 0 1
1(64) + 1(32) +
0(16) + 1(8) + 1(4)
+ 0(2) + 1(1) = 109

1101101 109

1 1 1 0 1 0 1
1(64) + 1(32) +
1(16) + 0(8) + 1(4)
+ 0(2) + 1(1) = 117

1110101 117

0 0 0 1 1 0 1
0(64) + 0(32) +
0(16) + 1(8) + 1(4)
+ 0(2) + 1(1) = 13

0001101 13

Fig. 3.49 Table demonstrating how numbers are ‘read’ in binary numbering system

The place value (64, 32, 16, 8, 4, 2, 1) in binary is in multiples/powers of 2 so each

subsequent place value starting from the right is multiplied by 2 as opposed to 10 in decimal.

All the place values are multiplied by the corresponding symbol (0 or 1) to get the final binary

value. Now that binary numbers are explained then bitwise operators can be applied to

them. As seen in Fig 3.47 there are three bitwise operators supported in iDev. The bitwise

AND, OR, and exclusive OR operator is applied to binary numbers by ‘adding’ the symbols.

Adding in binary is not the same as addition in mathematics. The results are based on the

rules of the operators. There are 4 possible combinations when operations are performed in

binary since only two symbols are used. A truth table (table containing all possible results) is

produced to demonstrate the difference between the bitwise operators. Then an example

taken from Fig 3.47 is broken down in a table to exhibit how the results are calculated. It is

better to refer to the truth tables first before looking at the bitwise example calculations for

all the operators.

2012 iDev Programming Guide Itron

Austin Barlis

108

All possible combinations for bitwise AND (&)

Operand1 AND (&) Operand2 Binary

Operand1 1 1 0 0

Operator & & & &

Operand2 1 0 1 0

Result 1 0 0 0

Fig. 3.50 Truth table to show all possible results from the bitwise AND operator

Bitwise AND example calculation

Operand1 AND (&) Operand2 Binary Decimal

Operand1 0 0 0 0 0 1 0 1 5

Operator & & & & & & & & &

Operand2 0 1 0 1 0 1 0 0 84

Result 0 0 0 0 0 1 0 0 4

Fig. 3.51 Table to show how resulting values are calculated using the bitwise AND operator

Looking at the examples above, it is evident that the only way to gets resulting value of 1

using the bitwise AND operator is if operands are 1.

All possible combinations for bitwise OR (|)

Operand1 OR (|) Operand2 Binary

Operand1 1 1 0 0

Operator | | | |

Operand2 1 0 1 0

Result 1 1 1 0

Fig. 3.52 Truth table to show all possible results from the bitwise OR operator

Bitwise OR example calculation

Operand1 OR (|) Operand2 Binary Decimal

Operand1 0 0 0 0 0 1 0 1 5

Operator | | | | | | | | |

Operand2 0 0 0 0 0 1 1 0 6

Result 0 0 0 0 0 1 1 1 7

Fig. 3.53 Table to show how resulting values are calculated using the bitwise OR operator

The example in Fig 3.53 and the truth table in Fig 3.52 suggest that the only way to get a

resultant value of 0 is if both operands using the bitwise OR operator is zero.

All possible combinations for bitwise exclusive OR (^)

Operand1 exclusive OR (^) Operand2 Binary

Operand1 1 1 0 0

Operator ^ ^ ^ ^

Operand2 1 0 1 0

Result 0 1 1 0

Fig. 3.54 Truth table to show all possible results from the bitwise exclusive OR operator

2012 iDev Programming Guide Itron

Austin Barlis

109

Bitwise exclusive OR example calculation

Operand1 exclusive OR(^) Operand2 Binary Decimal

Operand1 0 0 0 0 1 0 1 0 5

Operator ^ ^ ^ ^ ^ ^ ^ ^ ^

Operand2 1 1 0 1 0 0 1 0 210

Result 1 1 0 1 1 0 0 0 216

Fig. 3.55 Table to show how resulting values are calculated using the bitwise exclusive OR

operator

Lastly, for the bitwise exclusive OR operator, the way to get a resultant value of 1 is if either

of the operands value are 1 but both cannot be 1 and the only way to get a resultant value of

0 is if either 1 of the operands value is 0 but both cannot be 0.

Text String/Variable Operators for IF statements

Operator Definition Result: TRUE Result: FALSE

= or == total Unicode equivalent of text
string equal to

"hello" = "hello" "hello" = "hi"

<> or != total Unicode equivalent of text
string not equal to

"hello" != "hi" "hello" != "hello"

< total Unicode equivalent of text
string less than

"hello" < "empty" "hello" < "world"

> total Unicode equivalent of text
string greater than

"hello" > "world" "hello" > "thanks"

<= total Unicode equivalent of text
string less than or equal to

"hello" <= "allow" "hello" ~= "thanks"

>= total Unicode equivalent of text
string greater than or equal to

"hello" >= "hello" "hello" ~= "thanks"

~= same text length "hello" ~= "empty" "hello" ~= "thanks"

~< text length shorter than "hello" ~< "longest" "hello" ~< "hi"

~> text length greater than "hello" ~> "hi" "hello" ~> "really long"

~! not same text length "hello" ~! "thanks" "hello" ~! "allow"

Fig. 3.56 Table describing the different operators in comparing text strings/variables in iDev

Text strings can also be compared in iDev and hence included in if statements. This can be

used in various iDev projects such as one that requires password input from the user. Most

of the operators used to compare text strings are self-explanatory except =, !=, <, >, <= and

>=. These operators actually compare the total value of the text string in Unicode. Each

character in a text string is represented by a Unicode that contains a unique value in hex and

decimal. So an example is the word ‘hello’, unicode for h is 68(hex) and 104(decimal), e is

65(hex) 101(decimal), l is 6C(hex) 108(decimal) and finally o is 6F(hex) 111(decimal). The

decimal values are all added which is then compared to another text strings total value in

decimal.

2012 iDev Programming Guide Itron

Austin Barlis

110

Fig. 3.57 Screen shot displaying when numkey1 is pressed

Fig. 3.58 Screen shot displaying when txtkey2 is pressed

numkey1,

numbox1

txtkey1,

txtbox1

numkey2,

numbox2

txtkey2,

txtbox2

numkey1,

numbox1

txtkey1,

txtbox1

numkey2,

numbox2

txtkey2,

txtbox2

2012 iDev Programming Guide Itron

Austin Barlis

111

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

VAR command format:

VAR(Variable name, Starting value, Variable Style);

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2..], X, Y, Key style);

LOAD command format to change value of a variable:

LOAD(Destination Variable, New Value/Variable);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

LOOP command format:

Loop Header

LOOP(Loop name, Loop duration)

Loop Body

{

IF command format to create if statements with just one action, note that a Operand1 can be

a variable and Operand2 can be a literal text string or numeric value but both Operands

cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function);

IF command format to create if statements with an else action, note that a Operand1 can be

a variable and Operand2 can be a variable, literal text string or numeric value but both

Operands cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function1:Function2);

}

}

SHOW command format:

SHOW(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

112

Fig. 3.59 Example code to show the application of IF statements in iDev

The example code in Fig 3.59 uses a loop that checks the state of the variables myintvar and

mytxtvar. When the condition of the IF statements are true then the inline command is

carried out. The inline command uses the LOAD command dot operator to change the

background of the page. Each key component loads a different value to the variable which

//FILENAME: TU480a.mnu

STYLE(homepgst,Page) //

{

back = green; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = white; //

maxRows = 1; //

maxLen = 32; //

}

STYLE(boxdrwst,Draw) //

{

type = b; //

maxX = 120; //

maxY = 50; //

width = 3; //

back = grey; //

col = white; //

}

VAR(myintvar,0,S8); //

VAR(mytxtvar,"",TXT); //

PAGE(homepg,homepgst) //

{

POSN(100,120); //

KEY(numkey1,[LOAD(myintvar,10);],120,50,TOUCH); //

DRAW(numbox1,120,50,boxdrwst); //

TEXT(numtxt1,"10>5",Ascii16txst); //

POSN(380,+0); //

KEY(numkey2,[LOAD(myintvar,5);],120,50,TOUCH); //

DRAW(numbox2,120,50,boxdrwst); //

TEXT(numtxt2,"5=5",Ascii16txst); //

POSN(100,+70); //

KEY(txtkey1,[LOAD(mytxtvar,"allow");],120,50,TOUCH);

//

DRAW(txtbox1,120,50,boxdrwst); //

TEXT(txt1,"allow<hello",Ascii16txst); //

POSN(380,+0); //

KEY(txtkey2,[LOAD(mytxtvar,"thanks");],120,50,TOUCH);

//

DRAW(txtbox2,120,50,boxdrwst); //

TEXT(txt2,"thanks~>hello",Ascii16txst); //

LOOP(myloop,FOREVER) //

{

IF(myintvar > 5?[LOAD(homepgst.back,black);LOAD(myintvar,0);;]);

//

IF(myintvar = 5?[LOAD(homepgst.back,red);LOAD(myintvar,0);;]);

//

IF(mytxtvar < "hello"?[LOAD(homepgst.back,purple);LOAD(mytxtvar,"");;]);

//

IF(mytxtvar ~> "hello"?[LOAD(homepgst.back,orange);LOAD(mytxtvar,"");;]);

//

}

}

SHOW(homepg); //

2012 iDev Programming Guide Itron

Austin Barlis

113

satisfies one of the IF statements in the loop and triggers the inline command concerned.

The screen shots below shows what would be displayed if numkey1 and txtkey2 is pressed.

3.5. CASE – SWITCH/SELECT
In iDev, there is a method that emulates the SELECT/SWITCH CASE function found in other

programming languages. This method enables the developer to use minimal amount of IF

statements for an iDev project that requires long and multiple IF statements. The

SELECT/SWITCH CASE method in other languages tests the contents of a variable and

selectively process data according to its value. In iDev, functions located anywhere in the

program can be called on-demand provided that they use a common naming method. It is

possible compile a function name in a variable and then use the RUN(variable name);

command in iDev. So together with the CALC command, the iDev case equivalent method

ends up with less lines of code achieving the same results compared to that of the case

function method in other programming languages. An example code using 5 different cases

is created and applied in a basic iDev project.

Typical iDev Case Switch/Select method note that chkstr, input and runfnc are text variables,

caseval is a S8 integer variable that were predefined:

LOAD(chkstr, ",", input, ",");

CALC(caseval, ", 1AG, 2GQ, 3TE, 4PL, ", chkstr, "FIND");

IF(caseval < 0? case_default: [LOAD(runfnc, "case_", input); RUN(runfnc);]);

In the iDev project, the variable input is a dynamic variable that contains changing text

strings.

LOAD(chkstr, ",", input, ",");

The first line in the iDev case method encloses the contents of the variable input in commas

i.e. if the contents of input is “J6E” then the resultant text string loaded to the text variable

chkstr is “,J6E,”.

CALC(caseval, ", 1AG, 2GQ, 3TE, 4PL, ", chkstr, "FIND");

The next line then checks the contents of chkstr and compares it to the list of ‘acceptable’

text strings (case) that the developer has specified. In the example the ‘acceptable’ text

strings are “1AG, 2GQ, 3TE, 4PL”, it is obvious that “J6E” is not in this list. This would cause

the CALC command to return a value of -1 to the S8 (signed 8 bit integer) variable caseval.

IF(caseval < 0? case_default: [LOAD(runfnc, "case_", input); RUN(runfnc);]);

Lastly, the if statement checks if value of caseval is less than 0 and then run the appropriate

functions. Since the text string “J6E” is not found in the ‘acceptable’ list then it runs the

‘default’ function named case_default. On the other hand if the contents of input is changed

to “3TE” then the CALC command would return a value of 1 affecting the if statement to

process the alternative LOAD and RUN commands. The CALC command that uses the “FIND”

method is properly introduced in Chapter 3.6.2 of this guide. The LOAD command changes

the input contents to the common naming method that is used; in this example with the

contents of input being “3TE”, the new value of runfnc is now “case_3TE”. Effectively the

RUN command would end up processing RUN (case_3TE). It is important to remember that

there are functions called case_1AG, case_2GQ, case_3TE, case_4PL defined before the case

method function is created. For a clearer understanding a fully functional example that uses

the iDev case switch/select method is created.

2012 iDev Programming Guide Itron

Austin Barlis

114

Fig. 3.60 Screen shot showing changes when case value is case_default

Fig. 3.61 Screen shot showing changes when case value is case_A12C4

Fig. 3.62 Screen shot to showing changes when case value is case_547B1

boxdrw

circdrw

boxdrw

2012 iDev Programming Guide Itron

Austin Barlis

115

LIB command format for images:

LIB(Library image name, "Source/Filename");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

VAR command format:

VAR(Variable name, Starting value, Variable Style);

VAR command format for text variable:

VAR(Variable name, "Starting text value", Variable Style);

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2..], X, Y, Key style);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

LOOP command format:

Loop Header

LOOP(Loop name, Loop duration)

Loop Body

{

Loop contents…

}

}

SHOW command format:

SHOW(Page name or page component name);

HIDE command format:

HIDE(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

116

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

LOAD command format to update styles:

LOAD(Style name.Parameter, New Parameter Value);

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

LOAD command format to change stored text data from multiple sources:

LOAD(Destination variable name, Text data source1, Text data source2…);

IF command format to create if statements with an else action, note that a Operand1 can be

a variable and Operand2 can be a variable, literal text string or numeric value but both

Operands cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function);

Typical iDev Case Switch/Select method, note that chkstr, input and runfnc are text

variables, caseval is a S8 integer variable that were predefined:

LOAD(chkstr, ",", input, ",");

CALC(caseval, ", 1AG, 2GQ, 3TE, 4PL, ", chkstr, "FIND");

IF(caseval < 0? case_default: [LOAD(runfnc, "case_", input); RUN(runfnc);]);

2012 iDev Programming Guide Itron

Austin Barlis

117

//FILENAME: TU480a.mnu

LIB(backgrnd,"SDHC/Back.bmp"); //

STYLE(mypagest,Page) //

{

image = backgrnd; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = black; //

maxLen = 24; //

curRel = RC; //

}

STYLE(casetxst,Ascii16txst) //

{

col = red; //

curRel = CC;

}

STYLE(titletxst,casetxst) //

{

col = black; //

}

STYLE(drwbxst,Draw) //

{

type = b; //

back = red; //

width = 2; //

}

STYLE(drwcrst,drwbxst) //

{

type = c; //

}

VAR(caseval,0,S8); //

VAR(input,"",TXT); //

VAR(chkstr,"",TXT); //

VAR(runfnc,"",TXT); //

PAGE(homepg,mypagest) //

{

POSN(35,185); //

KEY(key1,[LOAD(input,input,1);],50,50,TOUCH); //

POSN(85,185); //

KEY(key2,[LOAD(input,input,2);],50,50,TOUCH); //

POSN(135,185); //

KEY(key3,[LOAD(input,input,3);],50,50,TOUCH); //

POSN(35,135); //

KEY(key4,[LOAD(input,input,4);],50,50,TOUCH); //

POSN(85,135); //

KEY(key5,[LOAD(input,input,5);],50,50,TOUCH); //

POSN(135,135); //

KEY(key6,[LOAD(input,input,6);],50,50,TOUCH); //

POSN(35,85); //

KEY(key7,[LOAD(input,input,7);],50,50,TOUCH); //

POSN(85,85); //

KEY(key8,[LOAD(input,input,8);],50,50,TOUCH); //

POSN(135,85); //

KEY(key9,[LOAD(input,input,9);],50,50,TOUCH); //

POSN(35,235); //

KEY(key0,[LOAD(input,input,0);],50,50,TOUCH); //

2012 iDev Programming Guide Itron

Austin Barlis

118

POSN(185,85); //

KEY(keyC,[LOAD(input,input,"C");],50,50,TOUCH); //

POSN(235,85); //

KEY(keyD,[LOAD(input,input,"D");],50,50,TOUCH); //

POSN(185,135); //

KEY(keyA,[LOAD(input,input,"A");],50,50,TOUCH); //

POSN(235,135); //

KEY(keyB,[LOAD(input,input,"B");],50,50,TOUCH); //

POSN(210,185); //

KEY(keyOK,entfunc,100,50,TOUCH); //

POSN(110,235); //

KEY(keybs,fncbsp,100,50,TOUCH); //

POSN(210,235); //

KEY(keydel,delfunc,100,50,TOUCH); //

POSN(240,35); //

TEXT(passtxt,"",Ascii16txst); //

POSN(375,140); //

DRAW(boxdrw,100,100,drwbxst); //

DRAW(circdrw,100,100,drwcrst); //

HIDE(circdrw); //

POSN(375,60); //

TEXT(title,"CASE selected:",titletxst); //

POSN(375,220); //

TEXT(casetxt,runfnc,casetxst); //

LOOP(textlp,FOREVER) //

{

TEXT(passtxt,input);; //

}

}

FUNC(delfunc) //

{

LOAD(input,""); //

}

FUNC(fncbsp) //

{

IF(input ~> 0?[CALC(input,input,-1,"DEL");TEXT(passtxt,input);;]);

//

}

FUNC(case_11C34) //

{

SHOW(boxdrw); //

HIDE(circdrw); //

LOAD(drwbxst.back,lime);; //

}

FUNC(case_D5541) //

{

SHOW(circdrw); //

HIDE(boxdrw); //

LOAD(drwcrst.back,blue);; //

}

FUNC(case_547B1) //

{

SHOW(boxdrw); //

HIDE(circdrw); //

LOAD(drwbxst.back,yellow);; //

}

FUNC(case_A12C4) //

{

SHOW(circdrw); //

HIDE(boxdrw); //

LOAD(drwcrst.back,hotpink);; //

}

2012 iDev Programming Guide Itron

Austin Barlis

119

Fig. 3.63 Example code demonstrating how the iDev case switch/select method is applied

The example code in Fig 3.63 displays a keypad which allows the user to input data strings.

When the user press the “Enter” button the function that uses the case switch/select

method is called. In total there are 5 different cases that is in this example code, each one

producing different coloured shapes on the right hand side of the screen to verify that the

function associated with the case is correct. Also the case that has been selected is displayed

as a text component on the bottom right hand side of the screen. The shape manipulation is

achieved by using the SHOW, HIDE and the LOAD commands as evident from the example

code above.

FUNC(case_default) //

{

SHOW(boxdrw); //

HIDE(circdrw); //

TEXT(casetxt,"case_default"); //

LOAD(drwbxst.back,red);; //

}

FUNC(deffunc) //

{

RUN(case_default); //

TEXT(casetxt,"case_default");; //

}

FUNC(otherfunc) //

{

LOAD(runfnc,"case_",input); //

RUN(runfnc); //

TEXT(casetxt,runfnc);; //

}

FUNC(entfunc) //

{

LOAD(chkstr , "," , input , ","); //

CALC(caseval, ",11C34,D5541,547B1,A12C4," , chkstr, "FIND");

//

IF(caseval < 0 ? deffunc : otherfunc); //

RUN(delfunc); //

}

SHOW(homepg); //

2012 iDev Programming Guide Itron

Austin Barlis

120

3.6. CALCULATION
The ability to make calculations in iDev is crucial to increase the versatility and capability of

iDev projects. Calculations can be carried out in numerical values and text strings in iDev. In

essence, it is used for numeric, mathematics, trigonometric, text and buffer manipulation,

file handling and checksums for data buffers.

3.6.1. ARITHMETIC
This section assumes that the developer knows the basic operations involving

mathematics, trigonometry and bitwise logical operations. If an explanation is

required for bitwise logical operations, then refer to Chapter 3.4. It is important to

remember that the result of the variable has to be stored in a suitable variable type

i.e. the result of an arithmetic calculation should not be stored in a text variable but

to an integer or a floating decimal point variable. For better explanation of each

method in iDev, a table that shows how it is applied in iDev with a calculator

equivalent column is produced.

CALC command format for most arithmetic methods:

CALC(Destination Variable, Operand 1, Operand2, "Method");

Numeric Handling

Method Definition Usage Example
Calculator
Equivalent

+ Operand1 plus Operand2 CALC(myintvar,2,5,"+"); 2 + 5 = 7

- Operand1 minus Operand2 CALC(myintvar,81,52,"-"); 81 - 52 = 29

/
Operand1 divided by
Operand2

CALC(myintvar,27,3,"/"); 27 ÷ 3 = 9

*
Operand1 multiplied by
Operand2

CALC(myintvar,47,17,"*"); 47 × 17 = 799

%
Operand 1 modulus of
Operand2

CALC(myintvar,26,4,"%"); 26 Mod 4 = 2

|
Operand1 bitwise OR
Operand2

CALC(myintvar,5,84,"&"); 5 AND 84 = 4

&
Operand1 bitwise AND
Operand2

CALC(myintvar,5,6,"|"); 5 OR 6 = 7

^
Operand1 bitwise exclusive OR
Operand2

CALC(myintvar,5,210,"^"); 5 XOR 210 = 215

Fig. 3.64 Table describing different methods for numeric handling in iDev

2012 iDev Programming Guide Itron

Austin Barlis

121

Mathematical Functions

Method Definition Usage Example
Calculator
Equivalent

ABS
Absolute value of
Operand1

CALC(myintvar, -16, "ABS"); abs(-16) = 16

EXP
Exponential function of
Operand1

CALC(myfltvar,14,"EXP"); exp(14) = 1.2026e6

LOG
Natural Logarithm of
Operand1

CALC(myfltvar,27,"LOG"); ln(27) = 3.29584

LOG10
Base-Ten Logarithm of
Operand1

CALC(myfltvar,56,"LOG10"); log(56) = 1.74819

POW
Operand1 raised to the
power of Operand2

CALC(myintvar,2,32,"POW"); 2
32

 = 4294967296

SQRT
Non-negative square
root of Operand1

CALC(myintvar,64,"SQRT"); √64 = 8

CBRT Cube root of Operand1 CALC(myintvar,64,"CBRT");
3
√64 = 4

RND
Random number(with
range 0 to 0.99999)
multiplied by Operand1

CALC(myfltvar,2,"RND"); rnd(2)= 1.9475

Fig. 3.65 Table describing different methods for mathematical function in iDev

Trigonometric Functions (degrees)

Method Definition Usage Example
Calculator
Equivalent

COS Cosine of Operand1 CALC(myfltvar, 15, "COS");
cos (15) =
0.965926

SIN Sine of Operand1 CALC(myfltvar, 25, "SIN");
sin (25) =
0.422618

TAN Tangent of Operand1 CALC(myfltvar, 63, "TAN"); tan(63) = 1.96261

ACOS Arc Cosine of Operand1 CALC(myfltvar, 0.57, "ACOS");
cos

-1
(0.57) =

55.249774

ASIN Arc Sine of Operand1 CALC(myfltvar, 0.84, "ASIN");
sin

-1
(0.84) =

57.140119

ATAN
Arc Tangent of
Operand1

CALC(myfltvar, 42, "ATAN");
tan

-1
(42) =

88.636072

ATAN2
Arc Tangent of
Operand1/Operand2

CALC(myfltvar, 63, 21, "ATAN2");
tan

-1
(63÷21) =

71.565051

COSH
Hyperbolic Cosine of
Operand1

CALC(myfltvar, 4, "COSH");
cosh(4) =
27.308233

SINH
Hyperbolic Sine of
Operand1

CALC(myfltvar, 12, "SINH");
sinh(12) =
81377.395706

TANH
Hyperbolic Tangent of
Operand1

CALC(myfltvar, 3, "TANH");
tanh(3) =
0.052408

ACOSH
Hyperbolic Arc Cosine
of Operand1

CALC(myfltvar, 13, "ACOSH");
cosh

-1
(13) =

3.256614

ASINH
Hyperbolic Arc Sine of
Operand1

CALC(myfltvar, 3, "ASINH");
sinh

-1
(3) =

1.818446

ATANH
Hyperbolic Arc Tangent
of Operand1

CALC(myfltvar, 0.24, "ATANH");
tanh

-1
(0.24) =

0.244774

Fig. 3.66 Table describing different methods for trigonometry in iDev

2012 iDev Programming Guide Itron

Austin Barlis

122

If trigonometric calculations in radians are required by the developer then this can

be changed in the system setup (see Chapter 1.5). The parameter has to be changed

to radians e.g. angle = radians. A combination of the basic methods and operations

in mathematics can be used to create a basic calculator. The basic calculator that

will be created can add, subtract, divide and multiply on up to 24 digits.

Fig. 3.67 Screen shot to demonstrate what will be observed on the display when the

code in Fig 3.68 is uploaded onto the TFT module

LIB command format for images:

LIB(Library image name, "Source/Filename");

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

VAR command format:

VAR(Variable name, Starting value, Variable Style);

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2..], X, Y, Key style);

LOAD command format to change value of a variable:

LOAD(Destination Variable, New Value/Variable);

2012 iDev Programming Guide Itron

Austin Barlis

123

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

LOOP command format:

Loop Header

LOOP(Loop name, Loop duration)

Loop Body

{

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

}

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

IF command format to create if statements with just one action, note that a

Operand1 can be a variable and Operand2 can be a literal text string or numeric

value but both Operands cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function);

CALC command format for most arithmetic methods

CALC(Destination Variable, Operand 1, Operand2, Method);

}

SHOW command format:

SHOW(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

124

//FILENAME: TU480a.mnu

LIB(backlibimg,"sdhc/Backg.bmp"); //

STYLE(homepgst,Page) //

{

image = backlibimg; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = black; //

maxLen = 24; //

curRel = RC; //

}

VAR(Entry,"",TXT); //

VAR(Operator,"",TXT); //

VAR(Var1,0,FLT4); //

VAR(Var2,0,FLT4); //

VAR(Ans1,0,FLT4); //

PAGE(Homepage,homepgst) //

{

POSN(350,35); //

TEXT(passtxt,"", Ascii16txst); //

POSN(140,185); //

KEY(key1,[LOAD(Entry,Entry,1);],50,50,TOUCH); //

POSN(190,185); //

KEY(key2,[LOAD(Entry,Entry,2);],50,50,TOUCH); //

POSN(240,185); //

KEY(key3,[LOAD(Entry,Entry,3);],50,50,TOUCH); //

POSN(140,135); //

KEY(key4,[LOAD(Entry,Entry,4);],50,50,TOUCH); //

POSN(190,135); //

KEY(key5,[LOAD(Entry,Entry,5);],50,50,TOUCH); //

POSN(240,135); //

KEY(key6,[LOAD(Entry,Entry,6);],50,50,TOUCH); //

POSN(140,85); //

KEY(key7,[LOAD(Entry,Entry,7);],50,50,TOUCH); //

POSN(190,85); //

KEY(key8,[LOAD(Entry,Entry,8);],50,50,TOUCH); //

POSN(240,85); //

KEY(key9,[LOAD(Entry,Entry,9);],50,50,TOUCH); //

POSN(140,235); //

KEY(key0,[LOAD(Entry,Entry,0);],50,50,TOUCH); //

POSN(290,85); //

KEY(mulkey,[LOAD(Operator,"*");RUN(var1updfunc);],50,50,TOUCH);

//

POSN(340,85); //

KEY(divkey,[LOAD(Operator,"/");RUN(var1updfunc);],50,50,TOUCH);

//

POSN(290,135); //

KEY(plskey,[LOAD(Operator,"+");RUN(var1updfunc);],50,50,TOUCH);

//

POSN(340,135); //

KEY(minkey,[LOAD(Operator,"-");RUN(var1updfunc);],50,50,TOUCH);

//

POSN(290,185); //

KEY(dotkey,[LOAD(Entry,Entry,".");],50,50,TOUCH);

//

POSN(340,185); //

KEY(OKkey,[RUN(equalfunc);],50,50,TOUCH); //

POSN(215,235); //

KEY(bskey,bspfunc,100,50,TOUCH); //

POSN(315,235); //

KEY(delkey,delfunc,100,50,TOUCH); //

2012 iDev Programming Guide Itron

Austin Barlis

125

Fig. 3.68 Example code to demonstrate the CALC command and create a fully

functional basic calculator

The background image of the page consists of an image of a numpad with a text

screen on top to emulate what a calculator looks like. This is a trick that can be

done in similar projects so instead of creating draw components and text

components for each number and operators, a whole image can just be set as a

background which would achieve the same purpose to indicate the position of the

keys. The key components are positioned accordingly to load correct numbers to

the variables when pressed. The example above uses variables to store appropriate

values in the parameters of the CALC command. The variable Var1 is used to store

the value for Operand1, variable Var2 is used to store the value for Operand2.

There is a loop created which updates the text component in the text screen to

notify the user which numbers have been pressed and stored for calculation. Then a

function that set appropriate operators is called when the “=” button is pressed.

LOOP(keyloop,FOREVER) //

{

TEXT(passtxt,Entry);; //

}

}

FUNC(delfunc) //

{

LOAD(Ans1,0); //

LOAD(Var1,0); //

LOAD(Var2,0); //

VAR(Operator,""); //

LOAD(Entry,""); //

}

FUNC(bspfunc) //

{

IF(Entry ~> 0?[CALC(Entry,Entry,-1,"DEL");TEXT(passtxt,Entry);;]);

//

}

FUNC(var1updfunc) //

{

LOAD(Var1,Entry); //

LOAD(Entry,""); //

TEXT(passtxt,Entry);; //

}

FUNC(equalfunc) //

{

LOAD(Var2,Entry); //

RUN(calcfunc); //

LOAD(Entry,Ans1); //

TEXT(passtxt,Entry);; //

}

FUNC(calcfunc) //

{

IF(Operator = "+"?[CALC(Ans1,Var1,Var2,"+");]);

//

IF(Operator = "-"?[CALC(Ans1,Var1,Var2,"-");]);

//

IF(Operator = "/"?[CALC(Ans1,Var1,Var2,"/");]);

//

IF(Operator = "*"?[CALC(Ans1,Var1,Var2,"*");]);

//

}

SHOW(Homepage); //

2012 iDev Programming Guide Itron

Austin Barlis

126

The CALC command format for every operation is created and is called depending

on which operator is pressed by the user. The line LOAD(Entry,Entry,1); and all the

other similar ones are used to add the value of the key pressed to the current

contents of the variable Entry. For example if the number 56987 is ‘typed’ into the

text screen then the user would have to press the key that calls

LOAD(Entry,Entry,5); first. The variable Entry’s starting value is 0 so this line would

result in assigning 5 in the variable Entry. Then the key that calls

LOAD(Entry,Entry,6) is called which adds 6 to the current value stored in Entry

resulting in loading 56 in the variable Entry, the same method occurs when the

buttons 9, 8 and 7 are pressed. After this, when an operator is pressed the

previously entered value stored in variable Entry is stored in Var1 and is set as

Operand1 in the CALC command parameter. Then after the second value is entered

and the ‘=’ button is pressed then the second value is loaded is stored in Var2 and

set as Operand2. Finally the appropriate CALC command is called depending on

which operator has been pressed. The ‘Undo’ and ‘Restart’ button uses the CALC

command as well but it uses text and cursor handling methods for text string

manipulation, this is explained further in Chapter 3.6.2.

3.6.2. TEXT STRINGS
In iDev, the CALC command can be used to manipulate text strings and cursors

where editable text is to be placed on the screen similar to what can be seen in a

calculator or editable text field. Different methods and combinations allow cursor

movement and type, text insertion and deletion, find or delete text, cursor position

and length. The destination variable has to be of suitable type for different methods

used, i.e. if the result is always going to be a numerical value then the variable

should be an integer variable and if text string then the variable should be a text

variable.

CALC command format for most text string methods:

CALC(Destination Variable, Operand1, Operand2, Method);

Text and Cursor Handling

Method and Definition Usage Example and Result

POS

 move the cursor of text in Operand1
to absolute position (0 to n) Operand2

 if absolute position is less than zero,
then cursor is put before the first
character and if greater than the
length of the text in Operand1 then
the cursor is placed after the last
character

 the 1
st

 character in a string is position
0

CALC(mytxtvar, "hello", 2, "POS");
= text string "hello" with cursor at the
3

rd
 character(‘l’) is stored in mytxtvar

2012 iDev Programming Guide Itron

Austin Barlis

127

REL

 move cursor of text in Operand1 from
current cursor placement to specified
place in Operand2

 positive values in Operand2 move the
cursor to the right and negative values
move the cursor to the left

 if the move results in a cursor position
less than zero then the cursor is put
before the first character and if
greater than the length of the text in
Operand1 then the cursor is placed
after the last character

CALC(mytxtvar, "hello", 2, "REL");
= text string "hello" with cursor at the
last character is stored in mytxtvar
because the previous cursor position is
at the last character

INS

 insert/overwrite text at Operand2 into
Operand1 at the cursor

 the text will either be overwritten or
inserted depending on the cursor type
of text in Operand1

 if no cursor is present then the text is
added to the end of text in Operand1

CALC(mytxtvar, "hello", "world", "INS");
= provided that the cursor is at the 2

nd

character and cursor type insert, the
text string "heworldllo" is stored in
mytxtvar

DEL

 deletes the number of characters
(Operand2) from text in Operand1 at
the cursor

 if the number of characters in
Operand2 is positive then the number
of characters specified will be deleted
after the cursor

 if the number of characters in
Operand2 is negative then the
number of characters specified will be
deleted before the cursor

 if no cursor is present and number of
characters specified in Operand2 is
negative, then the characters will be
deleted from the end of the text in
Operand1

 if no cursor is present and number of
characters specified in Operand2 is
positive , then the characters will be
deleted from the start of the text in
Operand1

CALC(mytxtvar, "hello", -1, "DEL");
= if the cursor is at the 4

th
 character,

the text string "hlo" is stored in
mytxtvar

TRIM

 remove characters specified in
Operand2 from start and end of text
string in Operand1

 if the characters specified in Operand2
is empty ("") then spaces (20hex), tab
(09hex), line feeds (0Ahex), and
carriage returns (0Dhex) are removed

CALC(mytxtvar, "hello", "llo", "TRIM");
= the text "he" is stored in mytxtvar

2012 iDev Programming Guide Itron

Austin Barlis

128

LTRIM

 removes characters specified in
Operand2 from start of text string in
Operand1

 if the characters specified in Operand2
is empty ("") then spaces (20hex), tab
(09hex), line feeds (0Ahex), and
carriage returns (0Dhex) are removed

CALC(mytxtvar, "hello", "llo", "LTRIM");
= the text "he" is stored in mytxtvar

RTRIM

 remove characters specified in
Operand2 from end of text string in
Operand1

 if the characters specified in Operand2
is empty ("") then spaces (20hex), tab
(09hex), line feeds (0Ahex), and
carriage returns (0Dhex) are removed

CALC(mytxtvar, "hello", "eh", "RTRIM");
= the text "llo" is stored in mytxtvar

UPPER

 convert text in Operand1 to uppercase

 the resultant text is stored in
destination variable

CALC(mytxtvar, "hello", 0, "UPPER");
= the text "HELLO” is stored in mytxtvar

LOWER

 convert text in Operand1 to lowercase

 the resultant text is stored in
destination variable

CALC(mytxtvar, "HELLO", 0, "LOWER");
= the text "hello" is stored in mytxtvar

BEF

 the characters specified in Operand2
are copied from before the cursor in
text string Operand1

 if no cursor is present then the
number of characters specified in
Operand2 are copied from the end of
text in Operand1

 if the number of characters specified
in Operand2 is greater than the
number of characters available in text
in Operand1 then only the available
characters are copied

 if the number of characters specified
in Operand2 is negative then the
function performs the same method
as "AFT"

CALC(mytxtvar, "hello", 2, "BEF");
= if the cursor is placed at the 3

rd

character then the text "he" is stored in
mytxtvar

2012 iDev Programming Guide Itron

Austin Barlis

129

AFT

 the characters specified in Operand2
are copied after the cursor in the text
string Operand1

 if no cursor is present then the
number of characters specified in
Operand2 are copied from the start of
text in Operand1

 if the number of characters specified
in Operand2 is greater than the
number of characters available in text
in Operand1 then only the available
characters are copied

 if the number of characters specified
in Operand2 is negative then the
function performs the same method
as "BEF"

CALC(mytxtvar, "hello", 3, "AFT");
= if the cursor is placed at the 2

nd

character then the text "llo" is stored in
mytxtvar

CUR

 the cursor of text in Operand1 is
changed to a type specified in
Operand2

 if no cursor is present, then the cursor
is added to the end of the text string
in Operand1

 if the type specified in Operand2 is a
string then the first character is taken
as the cursor type

CALC(mytxtvar, "hello", "\\03", "CUR");
= the cursor type in the text "hello" is
changed to a hidden cursor with insert
ON, then stored in mytxtvar

LEN

 the length of the text in Operand1 and
Operand2 is calculated and stored

 cursor characters are not included in
the length calculated

 since the result is always going to be a
numerical value, the destination
variable has to be an integer variable
type

CALC(myintvar, "hello", 3, "LEN");
= the total length of text is 8 (5+3) and
stored in myintvar

LOC

 the location of the cursor of the text in
Operand1 and Operand2 is stored

 cursor characters are not included in
the length calculated

 since the result is always going to be a
numerical value, the destination
variable has to be an integer variable
type

CALC(myintvar, "hello", 3, "LOC");
= the current location of the cursor is 2,
so the resultant location is 5 and stored
in myintvar

TYPE

 determine the current cursor type of
text in Operand1

 if no cursor is present then a value of
0 is used

 since the result is always going to be a
numerical value, the destination
variable has to be an integer variable
type

CALC(mytxtvar, "hello", 0, "TYPE");
= the cursor type of text "hello" is \\03
so the stored result in mytxtvar is \\03

2012 iDev Programming Guide Itron

Austin Barlis

130

FIND

 find the first location of the match of
text in Operand1 of text in Operand2
is stored in destination variable

 if no matches are found then -1 is
stored in the destination variable

 cursor characters are not included in
the calculation

 since the result is always going to be a
numerical value, the destination
variable has to be an integer variable
type

CALC(myintvar, "hello world", "o",
"FIND");
= the first location of the text is found
at the 5

th
 character of the text so the

stored result in myintvar is 4

LFIND

 find the last location of the match of
text in Operand1 of text in Operand2
is stored in destination variable

 if no matches are found then -1 is
stored in the destination variable

 cursor characters are not included in
the calculation

 since the result is always going to be a
numerical value, the destination
variable has to be an integer variable
type

CALC(myintvar, "hello world", "o",
"LFIND");
= the last location of the text is found
at the 8

th
 character of the text so the

stored result in myintvar is 7

IFIND

 find the first location of the case
insensitive match of text in Operand1
of text in Operand2 is stored in
destination variable

 if no case insensitive matches are
found then -1 is stored in the
destination variable

 cursor characters are not included in
the calculation

 since the result is always going to be a
numerical value, the destination
variable has to be an integer variable
type

CALC(myintvar, "hello WORLD", "L",
"IFIND"); = the first location of the case
insensitive match is found at the 3

rd

character of the text so the stored
result in myintvar is 2

ILFIND

 find the last location of the case
insensitive match of text in Operand1
of text in Operand2 is stored in
destination variable

 if no case insensitive matches are
found then -1 is stored in the
destination variable

 cursor characters are not included in
the calculation

CALC(mytxtvar, "hello WORLD",
"ILFIND");
= the last location of the case
insensitive match is found at the 10

th

character of the text so the stored
result in mytxtvar is 9

REM

 remove every occurrence of text in
Operand2 from text in Operand1

 case sensitive match of text is carried
out

CALC(mytxtvar, "hello worLD", "l",
"REM");
= the resultant text is "heo worLD" and
is stored in mytxtvar

2012 iDev Programming Guide Itron

Austin Barlis

131

IREM

 remove every case insensitive
occurrence of text in Operand2 from
text in Operand1

 case insensitive match of text is
carried out

CALC(mytxtvar, "hello worLD", "L",
"IREM");
= the resultant text is "heo word" and is
stored in mytxtvar

SPLIT

 split the text in Operand1 at the
character specified in Operand2
storing the text after the character in
Operand1 and the text before the
character into the destination variable
or convert it to a number

 if the specified character in Operand2
is not present then the whole text in
Operand1 is copied as the result and
hence stored in the destination
variable

 if the specified char is a string then the
first character is taken as the spilt
character and so the text in Operand1
is modified in this operation

CALC(mytxtvar, "hello world", "w",
"SPLIT");
= the resultant text stored in Operand1
is "world" and the text "hello " is stored
in mytxtvar

PIXX

 determine the width in pixels of the
text component Operand1 and
Operand2 is stored

 note that variable do not have a size
and returns a 0

 text components, image components,
draw components and key
components and pages do have sizes

 since the result is always going to be a
numerical value, the destination
variable has to be an integer variable
type

CALC(myintvar, mytxtvar, "0", "PIXX");
= the display width of the text in
Operand1 plus the value stated in
Operand2 is stored, the text mytxtvar
contains a text component with the
word “hello” and uses the built-in
Ascii16 font style, the value stored in
myintvar is 32

PIXY

 determine the height in pixels of the
text component Operand1 and
Operand2 is stored

 note that variable do not have a size
and returns a 0

 text components, image components,
draw components and key
components and pages do have sizes

 since the result is always going to be a
numerical value, the destination
variable has to be an integer variable
type

CALC(mytxtvar, "hello", "0", " PIXY");
= the display width of the text in
Operand1 plus the value stated in
Operand2 is stored, the text mytxtvar
contains a text component with the
word “hello” and uses the built-in
Ascii16 font style, the value stored in
myintvar is 15

Fig. 3.69 Table describing methods that can be used in text and cursor handling in

iDev

The table above would be a useful reference guide when the developer wants to

make an iDev project that requires user manipulation of text strings such as in a

keyboard. The methods in text and cursor handling enable the developer to create a

2012 iDev Programming Guide Itron

Austin Barlis

132

fully functional keyboard with the necessary buttons such as ‘backspace, ‘delete’, or

‘shift’. An example code is created to demonstrate the visible changes that some of

the methods described in Fig 3.69 would do to an existing text string.

Fig. 3.70 Screen shot showing what will be displayed before any of the buttons are

pressed or when the ‘RESET’ button is pressed

Fig. 3.71 Screen shot demonstrating the changes that would occur when the text

handling methods using the CALC command is applied

2012 iDev Programming Guide Itron

Austin Barlis

133

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

VAR command format:

VAR(Variable name, Starting value, Variable Style);

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2..], X, Y, Key style);

LOAD command format to change value of a variable:

LOAD(Destination Variable, New Value/Variable);

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

CALC command format for most arithmetic methods:

CALC(Destination Variable, Operand 1, Operand2, Method);

}

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

SHOW command format:

SHOW(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

134

//FILENAME: TU480a.mnu

STYLE(homepgst,Page) //

{

back = red; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = white; //

maxRows = 1; //

maxLen = 32; //

}

STYLE(blktxtst,Ascii16txst) //

{

col = black; //

}

STYLE(boxdrwst,Draw) //

{

type = b; //

maxX = 420; //

maxY = 50; //

width = 3; //

back = black; //

col = white; //

}

STYLE(whtboxdrwst,boxdrwst) //

{

back = white; //

col = black; //

maxX = 240; //

}

STYLE(greyboxdrwst,boxdrwst) //

{

back = grey; //

col = black; //

}

VAR(myintvar,0,S8); //

VAR(mytxtvar,"",TXT); //

VAR(mychgtxtvar,"hello world i am alive",TXT); //

PAGE(homepg,homepgst) //

{

POSN(110,35); //

DRAW(orgbox,160,35,greyboxdrwst); //

TEXT(orgtxt,"Original Text",Ascii16txst); //

POSN(330,+0); //

DRAW(showbox,240,35,whtboxdrwst); //

TEXT(showtxt,mychgtxtvar,blktxtst); //

POSN(110,+40); //

KEY(methkey1,upperfunc,160,35,TOUCH); //

DRAW(methbox1,160,35,boxdrwst); //

TEXT(methtxt1,"UPPER uppercase",Ascii16txst); //

POSN(330,+0); //

DRAW(chgbox1,240,35,whtboxdrwst); //

TEXT(chgtxt1,"upper effect",blktxtst); //

POSN(110,+40); //

KEY(methkey2,splitfunc,160,35,TOUCH); //

DRAW(methbox2,160,35,boxdrwst); //

TEXT(methtxt2,"SPLIT at i",Ascii16txst); //

POSN(330,+0); //

DRAW(chgbox2,240,35,whtboxdrwst); //

TEXT(chgtxt2,"split effect",blktxtst); //

2012 iDev Programming Guide Itron

Austin Barlis

135

Fig. 3.72 Code to demonstrate how some of the text string handling methods can be

applied using the CALC command in iDev

The example code in Fig 3.72 uses the UPPER, SPLIT, AFT and REM methods. There

are 5 buttons in total that are created, the first four buttons have functions that call

the CALC commands with their respective method and the last button is the reset

button to display the starting values of the text component for each method

example. Each function called when the method button is pressed has this line of

code LOAD(mychgtxtvar,”hello world i am alive”); which is important. This line of

code puts the starting text string value in mychgtxtvar which is the text string

involved in the manipulation, this allows the other methods to be independent of

POSN(110,+40); //

KEY(methkey3,aftfunc,160,35,TOUCH); //

DRAW(methbox3,160,35,boxdrwst); //

TEXT(methtxt3,"AFT at 2",Ascii16txst); //

POSN(330,+0); //

DRAW(chgbox3,240,35,whtboxdrwst); //

TEXT(chgtxt3,"after effect",blktxtst); //

POSN(110,+40); //

KEY(methkey4,remfunc,160,35,TOUCH); //

DRAW(methbox4,160,35,boxdrwst); //

TEXT(methtxt4,"REM l character",Ascii16txst); //

POSN(330,+0); //

DRAW(chgbox4,240,35,whtboxdrwst); //

TEXT(chgtxt4,"remove effect",blktxtst); //

POSN(240,+40); //

KEY(reskey,resfunc,400,35,TOUCH); //

DRAW(resbox,420,35,boxdrwst); //

TEXT(restxt,"RESET",Ascii16txst); //

}

FUNC(upperfunc) //

{

CALC(mytxtvar,mychgtxtvar,0,"UPPER"); //

TEXT(chgtxt1,mytxtvar); //

LOAD(mychgtxtvar,"hello world i am alive");; //

}

FUNC(splitfunc) //

{

CALC(mytxtvar,mychgtxtvar,"i","SPLIT"); //

TEXT(chgtxt2,mytxtvar); //

LOAD(mychgtxtvar,"hello world i am alive");; //

}

FUNC(aftfunc) //

{

CALC(mytxtvar,mychgtxtvar,2,"AFT"); //

TEXT(chgtxt3,mytxtvar); //

LOAD(mychgtxtvar,"hello world i am alive");; //

}

FUNC(remfunc) //

{

CALC(mytxtvar,mychgtxtvar,"l","REM"); //

TEXT(chgtxt4,mytxtvar); //

LOAD(mychgtxtvar,"hello world i am alive");; //

}

FUNC(resfunc) //

{

TEXT(chgtxt1,"upper effect"); //

TEXT(chgtxt2,"split effect"); //

TEXT(chgtxt3,"after effect"); //

TEXT(chgtxt4,"remove effect");; //

}

SHOW(homepg); //

2012 iDev Programming Guide Itron

Austin Barlis

136

each other, and otherwise the effects observed when the button is pressed would

be different depending on the order that they are pressed.

3.6.3. DATA BUFFERS
In iDev, raw data that is received through a serial interface can be manipulated for

its specific purpose. This gives the developer the option to set the correct buffer for

their iDev projects. The CALC command format is added with another parameter in

some methods as evident below.

CALC command format for most buffer handling methods:

CALC(Destination Variable, Operand 1, Operand2, Operand3, Method);

Method and Definition Usage Example and Result

BCOPY

 copy the length in bytes specified in
Operand2 from the start or end of
data string in Operand1

 if the length in bytes specified in
Operand2 is negative then the data
string is copied from the end

CALC(mybufvar, mytxtvar, 3, "BCOPY");

BCOPY

 copy the length in bytes specified in
Operand2 from the specified position
in Operand3 of data string in
Operand1

 if the length in bytes specified in
Operand2 is negative then the data
string is copied before the position
specified in Operand3

CALC(mybufvar, mytxtvar, 3, 6, "BCOPY");

BCUT

 remove the length in bytes specified
in Operand2 from start or end of
data string in Operand1

 if the length in bytes specified in
Operand2 is negative then the data
string is copied from the end

CALC(mybufvar, mytxtvar, 3, "BCUT");

BCUT

 remove the length in bytes specified
in Operand2 from the specified
position in Operand3 of data string in
Operand1

 if the length in bytes specified in
Operand2 is negative then the data
string is copied before the position
specified in Operand3

CALC(mybufvar, mytxtvar, 3, 9, "BCUT");

 BINS

 insert the specified data/variable in
Operand2 to a specified position in
Operand3 of the data in Operand1

 the resultant data string is stored in
the destination variable

CALC(mybufvar, mytxtvar, myinfvar, 4, "BINS");

2012 iDev Programming Guide Itron

Austin Barlis

137

 BREP

 replace the specified data/variable
content in Operand2 by the contents
of Operand1 from the position
specified in Operand3 of the data in
Operand1

 the string after the position set in
Operand3 is replaced by the string in
Operand2

CALC(mybufvar, mytxtvar, myinftvar, 7,
"BREP");

 BFIND

 find the first location of the
data/variable specified in Operand2
from the specified data in Operand1

 the result returned is a numerical
value so the destination variable has
to be an integer variable

CALC(myintvar, mytxtvar, myinftvar, "BFIND");

BLFIND

 find the last location of the
data/variable specified in Operand2
from the specified data in Operand1

 the result returned is a numerical
value so the destination variable has
to be an integer variable

CALC(myintvar, mytxtvar, myinftvar,
"BLFIND");

BLEN

 determine the length of the data in
Operand1 and number specified in
Operand2

 the result returned is a numerical
value so the destination variable has
to be an integer variable

 it is important to remember that the
value specified in Operand2 is added
to the result

CALC(myintvar, mybufvar, 0, "BLEN");

BTRIM

 remove the number of bytes
specified in Operand2 from the start
and end of the data in Operand1

 the modified result is stored in the
destination variable

 make sure the amount of bytes
specified is correct as inappropriate
amount of bytes can cause errors

CALC(mybufvar, mytxtvar, 2, "BTRIM");

BLTRIM

 remove the number of bytes
specified in Operand2 from the start
of the data in Operand1

 the modified result is stored in the
destination variable

 make sure the amount of bytes
specified is correct as inappropriate
amount of bytes can cause errors

CALC(mybufvar, mytxtvar, 3, "BLTRIM");

2012 iDev Programming Guide Itron

Austin Barlis

138

BRTRIM

 remove the number of bytes
specified in Operand2 from the end
of the data in Operand1

 the modified result is stored in the
destination variable

 make sure the amount of bytes
specified is correct as inappropriate
amount of bytes can cause errors

CALC(mybufvar, mytxtvar, 1, "BRTRIM");

BREM

 remove every occurrence of data
specified in Operand2 from data in
Operand1

 the specified string to be removed is
searched from the start of the data
string in Operand1

CALC(mybufvar, mytxtvar, "ell", "BREM");

Fig. 3.73 Table to describe the buffer handling methods that can be applied in iDev

The buffer handling methods are useful when an interface is enabled in an iDev

project. The main use of these methods is in interrupts. An interrupt is setup to

handle all the received data in any of the serial ports, for more information about

interrupts see Chapter 4.7. An example application is when the buffer is set to

receive certain keywords/commands that triggers a certain function. Using the

CALC command with the appropriate methods, the keywords can be located and

extracted from the buffer. The interface setup is properly introduced in Chapter 4 of

this guide.

2012 iDev Programming Guide Itron

Austin Barlis

139

3.6.4. OTHER CALCULATION METHODS (INCOMPLETE)
NAND Directory listing method

In iDev, text variables can be populated by filenames in NAND. This option allows

the developer to add ‘sort’ functionality in their iDev project.

CALC command format for NAND directory listing:

CALC(Destination Variable, Operand1, Operand2, Operand3, "DIR");

NAND Directory operations

Parameter Expected Values Definition

Operand1 "NAND"

state the source
of the list of files
that requires
sorting

Operand2

"*.*"

state the type of
file that should
be selected
(filter)

"*"

"*.bmp"

"*.jpg"

"*.png"

"*.wav"

"*.mp3"

"*.wma"

"*.fnt"

"*.txt"

"*.mnu"

Operand3
"separator"
(default ",")

state the
separator for
each of the files

Fig. 3.74 Table describing the parameters for CALC command format for NAND

directory listing

Example Result Explanation

NAND contains: song1.mp3, song2.mp3,
pic1.bmp, pic2.bmp, funcs.mnu,
sound.wma, img1.jpg, img2.jpg

CALC(mytxtvar,"NAND","DIR");
mytxtvar = "song1.mp3,
song2.mp3, pic1.bmp,
pic2.bmp, func.mnu"

list all files in
NAND

CALC(mytxtvar,"NAND","*","DIR");
mytxtvar = "song1.mp3,
song2.mp3, pic1.bmp,
pic2.bmp, func.mnu"

list all files in
NAND

CALC(mytxtvar,"NAND","*",",","DIR");
mytxtvar = "sound.wma,
img1.jpg, img2.jpg"

list all files in
NAND

CALC(mytxtvar,"NAND","*.bmp",":","DIR");
mytxtvar =
"pic1.bmp:pic2.bmp"

list all bmp files

CALC(mytxtvar,"NAND","*.fnt","DIR"); mytxtvar = "0"

list none
because there’s
no font files
present in NAND

CALC(mytxtvar,"NAND","*.jpg","/","DIR");
mytxtvar =
"img1.jpg/img2.jpg"

list all jpg files

Fig. 3.75 Table showing example CALC commands to manipulate the filenames in

2012 iDev Programming Guide Itron

Austin Barlis

140

the NAND directory listing

Checksums

Checksum in most programming languages allows the developer to find and

sometimes fix errors in message strings or set of bits that needs accuracy. Noise can

sometimes affect the data packet received during data communication which can

cause errors. The first type of checksum contains the exact value/size of the packet

i.e. if the sum of the other bytes in the packet is 255 or less then the checksum’s

value is the same. The second type of checksum is the remainder of the total

value/size of the packet after it has been divided by 256. It is important that a

checksum of a packet does not have to be 1 byte long (0-255), it can be longer

depending on what is required. In iDev there are two forms of checksums, namely

MCHK and TCHK.

CALC command format for MCHK iDev Checksums where Operand1 is the source of

the buffer and Operand2 is the type:

CALC(Destination Buffer, Operand1, Operand2, "MCHK");

This checksum copies the buffer in Operand1 to the destination buffer. If unsure

what buffer means then refer to the glossary located at end of this guide. This

makes a checksum of the type specified in Operand2 and append to the destination

buffer.

CALC command format for TCHK iDev Checksums where Operand1 is the source of

the buffer and Operand2 is the type:

CALC(Result, Operand1, Operand2, "TCHK");

This checksum if for testing of the type specified in the source buffer in Operand1

and returns a result of 1 if checksums are the same and 0 if not.

Checksums iDev

Operand2 (type) Definition

"SUM8ZA"

 adds all the data in Operand1 as type U8

 checksum is two’s complement of the sum

 stored as two ASCII hexadecimal characters

 when sum is added to checksum is zero then the result is 1

"SUM8ZD"

 adds all the data in Operand1 as type U8

 checksum is two’s complement of sum

 stores as single U8

 when sum is added to checksum is zero then the result is 1

"SUM8A"

 adds all data in Operand1 as type U8

 checksum is the sum

 stored as two ASCII hexadecimal characters

 when sum is same as checksum then the result is 1

"SUM8D"

 add all data in Operand1 as type U8

 checksum is sum

 stored as single U8

 when sum is same as checksum then the result is 1

"XOR8A"

 exclusive-or (XOR) of all data in Operand1 as type U8

 checksum is XOR

 stored as two ASCII hexadecimal characters

 when XOR of Operand1 with checksum is zero then the
result is 1

2012 iDev Programming Guide Itron

Austin Barlis

141

"XOR8D"

 exclusive-or (XOR) of all data in Operand1 as type U8

 checksum is XOR

 stored as single U8

 when XOR of Operand1 with checksum is zero then the
result is 1

Fig. 3.76 Table describing different checksums that can be used in iDev

Advanced Checksums

For advanced developers, CRC-16 and CRC-32 are supported in iDev. For beginner

developers, here is a brief definition of the CRC method. CRC stands for cyclic

redundancy check which uses a similar method to the basic checksum defined

previously; the only difference is that it uses division instead of addition. This is a

more accurate error detection method as it can detect more errors than the basic

checksum. The 16 and 32 in CRC-16 and CRC-32 refers to the number of bits of the

divisor when the CRC calculation is processed, 16 means 17 bits and 32 means 33

bits.

CALC command format for CRC16 in iDev:

CALC(Destination Variable, Operand1, Operand2, Operand3, "CRC16");

CRC-16 Support

Operand2
(type)

Poly-
nominal

Initial
Value

Reflect
In

Reflect
Out

XOR Out
Value

Names and aliases

"arc" 0x8005 0x0000 Yes Yes 0x0000
"ARC", "CRC-16", "CRC-
IBM", "CRC-16/ARC",
"CRC-16/LHA"

"kermit" 0x1021 0x0000 Yes Yes 0x0000

"KERMIT" "CRC-
16/CCITT", "CRC-
16/CCITT-TRUE", "CRC-
CCITT"

"modbus" 0x8005 0xFFFF, Yes Yes 0x0000 "MODBUS"

"x-25" 0x1021 0xFFFF Yes Yes 0xFFFF
"X-25", "CRC-16/IBM-
SDLC", "CRC-16/ISO-
HDLC", "CRC-B"

"xmodem" 0x1021 0x0000 No No 0x0000
"XMODEM",
"ZMODEM", "CRC-
16/ACORN"

"ccitt-f" 0x1021 0xFFFF No No 0x0000 "CRC-16/CCITT-FALSE"

"usb" 0x8005 0xFFFF Yes Yes 0xFFFF, "CRC-16/USB"

"spi" 0x1021 0x1D0F No No 0x0000
"CRC-16/SPI-FUJITSU",
"CRC-16/AUG-CCITT"

"buypass" 0x8005 0x0000 No No 0x0000
"CRC-16/BUYPASS",
"CRC-16/VERIFONE"

"dds-110" 0x8005 0x800D No No 0x0000 "CRC-16/DDS-110"

"dect-r" 0x0589 0x0000 No No 0x0001 "CRC-16/DECT-R"

"dect-x" 0x0589 0x0000 No No 0x0000 "CRC-16/DECT-X"

"dnp" 0x3D65 0x0000 Yes Yes 0xFFFF "CRC-16/DNP"

"en13757" 0x3D65 0x0000 No No 0xFFFF "CRC-16/EN-13757"

"genibus" 0x1021 0xFFFF No No 0xFFFF

"CRC-16/GENIBUS",
"CRC-16/EPC", "CRC-
16/I-CODE", "CRC-
16/DARC"

"maxim" 0x8005 0x0000 Yes Yes 0xFFFF "CRC-16/MAXIM"

2012 iDev Programming Guide Itron

Austin Barlis

142

"mcrf4xx" 0x1021 0xFFFF Yes Yes 0x0000 "CRC-16/MCRF4XX"

"riello", 0x1021 0xB2AA Yes Yes 0x0000 "CRC-16/RIELLO"

"t10-dif", 0x8BB7 0x0000 No No 0x0000 "CRC-16/T10-DIF"

"teledsk" 0xA097 0x0000 No No 0x0000 "CRC-16/TELEDISK"

"tms371x" 0x1021 0x89EC Yes Yes 0x0000 "CRC-16/TMS37157"

"a" 0x1021 0xC6C6 Yes Yes 0x0000 "CRC-A"

Fig. 3.77 Table describing different CRC-16 types that can be applied in iDev

CALC command format for CRC32 in iDev:

CALC(Destination Variable, Operand1, Operand2, Operand3, "CRC32");

CRC-32 Support

Operand2
(type)

Poly-
nominal

Initial Value
Reflect
In

Reflect
Out

XOR Out
Value

Names and
Aliases

"adcpp" 0x04C11DB7 0xFFFFFFFF Yes Yes 0xFFFFFFFF
"CRC-32", "CRC-
32/ADCCP",
"PKZIP"

"bzip2" 0x04C11DB7 0xFFFFFFFF No No 0xFFFFFFFF

"CRC-32/BZIP2",
"CRC-32/AAL5",
"CRC-32/DECT-
B", "B-CRC-32"

"c" 0x1EDC6F41 0xFFFFFFFF Yes Yes 0xFFFFFFFF
"CRC-32C",
"CRC-32/ISCSI",
"CRC-
32/CASTAGNOLI"

"d" 0xA833982B 0xFFFFFFFF Yes Yes 0xFFFFFFFF "CRC-32D"

"mpeg-2" 0x04C11DB7 0xFFFFFFFF No No 0x00000000 "CRC-32/MPEG-
2"

"posix" 0x04C11DB7 0x00000000 No No 0xFFFFFFFF "CRC-32/POSIX",
"CKSUM"

"q" 0x814141AB 0x00000000 No No 0x00000000 "CRC-32Q"
"jamcrc" 0x04C11DB7 0xFFFFFFFF Yes Yes 0x00000000 "JAMCRC"
"xfer" 0x000000AF 0x00000000 No No 0x00000000 "XFER"
Fig. 3.78 Table describing different CRC-32 types that can be applied in iDev

2012 iDev Programming Guide Itron

Austin Barlis

143

Text, Draw and Image Component Information

The CALC command can also be used in gathering certain attributes about a

specified component. The size, status, visibility and alignment attributes can be

determined using a certain CALC command method.

CALC command format for deducing text, draw and image component information:

CALC(Destination Variable, Operand1, "Method");

Method Definition Expected Results

"ESIZE"
calculates the allocated display
size

value returned is in bytes

"EDEL"
determines if the component has
been deleted

if component is deleted then
return value is 1, otherwise 0

"EVIS"
determines if the component is
visible

if component is visible then
return value is 1, otherwise 0

"EALIGN"
determine the alignment of the
specified component

0 = top left

1 = top centre

2 = top right

3 = centre left

4 = centre centre

5 = centre right

6 = bottom left

7 = bottom centre

8 = bottom right

Fig. 3.79 Table describing different methods that can be used to gain text, draw and

image component attributes

User Protocol Split

In iDev a multiple split of a data buffer to a series of variables can be applied by

using the CALC command as well. If the developer requires to separate chunks of

the data buffer into different types of variable then this method would be suitable.

The buffer specified in Operand1 is split at each character specified in Operand2

and each separated result is stored in an incrementing series of variables prefixed

with the name indicated in the Destination Pointer. So if the Destination Pointer

contains myvar then the first variable will be ‘myvar0’, then ‘myvar1’, ‘myvar2’,

‘myvar3’… and so on. If a particular myvarN is not defined then the result is not

stored for that split. The data is stored in the data type format specified in each

‘myvarN’ allowing the buffer to be split into text, unsigned/signed integers and

floats. It is important to remember that the Destination Pointer parameter has to be

a pointer variable because it uses this as a prefix for the destination of the split

variables. If unsure on how to create pointer variables then refer to Chapter 3.1.5.

VAR command format:

VAR(Variable name, Starting value, Variable Style);

VAR command format for text variable:

VAR(Variable name, "Starting text value", Variable Style);

CALC command format for splitting data buffers:

CALC(Destination Pointer, Operand1, Operand2, "MSPLIT");

2012 iDev Programming Guide Itron

Austin Barlis

144

VAR declaration and CALC command Definition

VAR(destptr>"myvar", PTR); create a pointer variable

VAR(myvar0, 0, U8);
create the first variable to contain the first
buffer split

VAR(myvar1, 0, S32);
create the second variable to contain the
second buffer split

VAR(myvar2, 0.0, FLT4);
create the third variable to contain the thirds
buffer split

VAR(myvar3, "", TXT);
create the fourth variable to contain the
fourth buffer split

VAR(mybuf, "14:-21:3.141:Hi", TXT);
this is where the contents of the buffer is
specified, a variable containing a set amount
of string is created

CALC(destptr, mybuf, ":", "MSPLIT");

the CALC command to split the data buffers
and this results to:
myvar0 = 14
myvar1 = -21
myvar2 = 3.141
myvar3 = "Hi"

Fig. 3.80 Example to demonstrate how the CALC command is used to perform

multiple splits to data buffers

The CALC command format using MSPLIT can also be used to store the split data

into array elements. The result of the divided data buffer is stored in the variables

stated by successive subscripts of the pointer array. The first variable will be the

variable name stored in ‘myptrarray.0’, then ‘myptrarray.1’, ‘myptrarray.2’,

‘myptrarray.3’… and so on. Similarly, if ‘myptrarrayN’ is not a variable or not

defined then the result is not stored for that split. The data stored in the format

specified in each ‘myptrarray.N’ variable allowing the buffer to be split into text,

unsigned/signed integers and floats. In essence, everything is the same when using

a normal pointer as a destination compared to that of a pointer array, the only

difference is the type of destination of the data that has been split as evident in the

example below.

VAR command format:

VAR(Variable name, Starting value, Variable Style);

VAR command format for text variable:

VAR(Variable name, "Starting text value", Variable Style);

CALC command format for splitting data buffers:

CALC(Destination Pointer, Operand1, Operand2, "MSPLIT");

VAR declaration, Array loading and
CALC command

Definition

VAR(myptrarr>"", PTR, 4);???
create a one-dimensional 4 element
pointer array

VAR(alpha , 0, U8);
create the first variable to contain the
first buffer split

LOAD(myptrarr.0>"alpha");
set the pointer so that the first element
in the array is pointed to the variable
‘alpha’

VAR(bravo, 0, S32);
create the second variable to contain the
second buffer split

2012 iDev Programming Guide Itron

Austin Barlis

145

LOAD(myptrarr.1>"bravo");
set the pointer so that the second
element in the array is pointed to the
variable ‘bravo’

VAR(charlie, 0.0, FLT4);
create the third variable to contain the
third buffer split

LOAD(myptrarr.2>"charlie");
set the pointer so that the third element
in the array is pointed to the variable
‘charlie’

VAR(delta, "", TXT);
create the fourth variable to contain the
fourth buffer split

LOAD(myptrarr.3>"delta");
set the pointer so that the fourth
element in the array is pointed to the
variable ‘delta’

VAR(mybuf, "14:-21:3.141:Hi", TXT);
this is where the contents of the buffer is
specified, a variable containing a set
amount of string is created

CALC(myptrarr, mybuf, ":", "MSPLIT");

the CALC command to split the data
buffers and this results to:
alpha = 14
bravo = -21
charlie = 3.141
delta = "Hi"

Fig. 3.81 Example to demonstrate how the CALC command and pointer arrays is

used to perform multiple splits to data buffers

If a reminder on how to create pointers or arrays is needed then refer to Chapter

3.1.5 and Chapter 3.1.6 of this guide. This method using pointer arrays may be

useful when the developer requires adding text data to array elements. Using

pointer arrays, testing found the time to split 64 parameters using ‘MSPLIT’ was

8ms compared to 64 individual ‘SPLIT’ which took 30 ms.

2012 iDev Programming Guide Itron

Austin Barlis

146

3.7. COUNTERS
There are 31 built-in I/O counters and Runtime counters that use pre-defined variables which

can be reset and tested for value.

3.7.1. I/O COUNTERS
The Input/Output (I/O) counter stores values in an unsigned 32 bit register (U32)

named CNTKXX, where XX is the I/O number for the specific counter. When using

I/O counters, the I/O that is used is required to be setup to be initialised but do not

require an associated INT command. The increment of the counter depends on the

rising or falling edge of the interrupt i.e. every time an edge is detected by the

interrupt then the counter is incremented. The command RESET(CNTKxx) resets the

I/O counter on K00. Also the command LOAD(CNTkxx, value) sets a starting value

for the specified I/O counter. In essence, the built-in variables (CNTKxx) can be

treated as a normal iDev variable. The maximum counter speed is 0-10 kHz+ and is

dependent on the other interrupt and entity usage. The Digital I/O interface setup is

explained thoroughly in Chapter 4.6 of this guide.

I/O Counter Assignment Pin Assignment

CNTK00 Pin number 5 K00 (CN7)

CNTK01 Pin number 6 K01 (CN7)

CNTK02 Pin number 7 K02 (CN7)

CNTK03 Pin number 8 K03 (CN7)

CNTK04 Pin number 9 K04 (CN7)

CNTK05 Pin number 10 K05 (CN7)

CNTK06 Pin number 11 K06 (CN7)

CNTK07 Pin number 12 K07 (CN7)

CNTK08 Pin number 13 K08 (CN7)

CNTK09 Pin number 14 K09 (CN7)

CNTK10 Pin number 15 K10 (CN7)

CNTK11 Pin number 16 K11 (CN7)

CNTK12 Pin number 17 K12 (CN7)

CNTK13 Pin number 18 K13 (CN7)

CNTK14 Pin number 19 K14 (CN7)

CNTK15 Pin number 20 K15 (CN7)

CNTK16 Pin number 1 K16 (CN4)

CNTK17 Pin number 2 K17 (CN4)

CNTK18 Pin number 5 K18 (CN4)

CNTK19 Pin number 6 K19 (CN4)

CNTK20 Pin number 7 K20 (CN4)

CNTK21 Pin number 8 K21 (CN4)

CNTK22 Pin number 9 K22 (CN4)

CNTK23 Pin number 10 K23 (CN4)

CNTK24 Pin number 2 K24 (CN3)

CNTK25 Pin number 3 K25 (CN3)

CNTK26 Pin number 4 K26 (CN3)

CNTK27 Pin number 6 K27 (CN3)

CNTK28 Pin number 7 K28 (CN3)

CNTK29 Pin number 9 K29 (CN3)

CNTK30 Pin number 10 K30 (CN3)

Fig. 3.82 Table to describe which I/O pin corresponds to the specific I/O counter

2012 iDev Programming Guide Itron

Austin Barlis

147

There are various ways when I/O counters are applied in an iDev project, a few

usage examples are found in the table below.

IF command format to create if statements with just one action, note that a

Operand1 can be a variable and Operand2 can be a literal text string or numeric

value but both Operands cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function);

IF command format to create if statements with an else action, note that a

Operand1 can be a variable and Operand2 can be a variable, literal text string or

numeric value but both Operands cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function1:Function2);

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

LOAD command format to change stored integer/ float data:

LOAD(Destination variable name, Int/float data source);

Example Usage Definition

IF(CNTK15 > 150?chgfunc);
run function chgfunc if the value of I/O
counter at K15 is greater than 150

IF(CNTK15 = CNTK21?togonfunc:togofffunc);
run function togonfunc if the value of
I/O counter at K15 is the same as in K21,
otherwise run the function togofffunc

TEXT(K04txt, CNTK04, mytxtfnt);

create a text component and set the
contents of the counter specified
(CNTK04) to be the source of the text
data

TEXT(K04txt, CNTK04);;
update the text component above to the
most recent value of the I/O counter
CNTK04

LOAD(CNTK07, 2451);
change the current value of the I/O
counter CNTK07

RESET(CNTK03); reset the I/O counter on K03

Fig. 3.83 Table demonstrating how I/O counters can be used and applied on iDev

3.7.2. RUNTIME COUNTER
The runtime counter in iDev can be set to increment in different units depending on

the name of the pre-defined variable. Similar to the I/O counter, the pre-defined

runtime counter variables can be treated as normal iDev variable. The command

Reset(RUNTIME) sets all the values of all the runtime counters to zero and starts the

timer again. This runtime counter is independent of the real time clock and runs

continually so no setup is required. Also it is worth remembering that the runtime

counter starts counting as soon as the TFT module reaches the loading screen when

turned on.

2012 iDev Programming Guide Itron

Austin Barlis

148

Runtime Counter Definition Possible Values

CNTMILLI Increments every millisecond 0-999

CNTSECS Increments every second 0-59

CNTMINS Increments every minute 0-59

CNTHOURS Increments every hour 0-23

CNTDAYS Increments every 24 hours
0 and up (maximum
is 4,294,967,295)

CNTRUN
Increments every millisecond
since system reset

0 and up
(86,400,000 = 1 day,
maximum is
4,294,967,295)

Fig. 3.84 Table describing different runtime counters that can be used in iDev

Runtime counters have many applications in numerous iDev projects. A table that

demonstrates how runtime counters are used is found below.

IF command format to create if statements with just one action, note that a

Operand1 can be a variable and Operand2 can be a literal text string or numeric

value but both Operands cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function);

IF command format to create if statements with an else action, note that a

Operand1 can be a variable and Operand2 can be a variable, literal text string or

numeric value but both Operands cannot be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function1:Function2);

TEXT command format with text data source from a variable:

TEXT(Text component name, Text variable, Text Style);

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

LOAD command format to change stored integer/ float data:

LOAD(Destination variable name, Int/float data source);

Example Usage Definition

IF(CNTMINS > 30?halfhourfunc);
run function halfhourfunc when the
runtime counter CNTMINS exceeds 30
minutes

IF(CNTMINS = 15?turnonfunc:turnofffunc);
run function turnonfunc when the runtime
counter reaches 15 minutes, otherwise run
function turnofffunc

TEXT(hrstxt, CNTHOURS);;
update the text component hrstxt to the
most recent value of the runtime counter
CNTHOURS and then refresh the screen

LOAD(CNTSECS, 10);
change the current value of the runtime
counter CNTSECS

Fig. 3.85 Table demonstrating how different runtime counters can be used and

applied in iDev

Unlike the I/O counter, when using the runtime counter there is no need to set it up

at all, the developer only needs to use the pre-defined variables but the runtime

counter can be used with interrupts i.e. wrap-around interrupt for the runtime

counter. So the developer can set functions to be called depending on the runtime

counter used with the interrupt as evident in the table below. Interrupts are

2012 iDev Programming Guide Itron

Austin Barlis

149

properly introduced in Chapter 4.7 of this guide but setting up timer interrupts uses

a similar command format.

INT command format to use as wrap-around interrupt for the runtime counter:

INT(Interrupt name, Runtime counter, Function to be called);

Runtime Counter with INT Definition

INT(myint, CNTMILLI, mymilfunc); call the function mymilfunc every 1000 milliseconds

INT(myint, CNTSECS, mysecfunc); call the function mysecfunc every 60 seconds

INT(myint, CNTMINS, myminfunc); call the function myminfunc every 60 minutes

INT(myint, CNTHOURS, myhrsfunc); call the function myhrsfunc every 24 hours

INT(myint, CNTDAYS, mydayfunc); call the function mydayfunc every 4,294,967,295 days

Fig. 3.86 Table demonstrating how wrap-around interrupts with runtime counters

are used

3.8. TIMERS
In iDev, there are 10 available timer interrupts that can be used (TIMER0-TIMER9). Timer

interrupts are mainly used when specific occurrences in a program must happen at a given

frequency e.g. an iDev project that requires the user to input calorie intake every 4 hours will

have to use timer interrupts. It is easy to confuse timers with counters, it important to

remember they have similarities but both are used for different purposes. Counters in iDev

uses pre-defined variables such as CNTMILLI and CNTSECS but the timers in iDev don’t use

pre-defined variables so you cannot treat TIMER0-TIMER9 as true iDev variables i.e. you

cannot use commands that are normally applicable to iDev variables to TIMER0-TIMER9.

The ten countdown timers in iDev can be setup simultaneously, each with 1 millisecond

resolution (1000ms = 1s). Interrupts are properly introduced in Chapter 4.7 of this guide but

setting up timer interrupts uses a similar command format.

INT command format to setup timer interrupts, where x is the number of timer interrupt

being used (TIMER0-TIMER9):

INT(Timer Interrupt name, TIMERx, Function to be called);

The developer can control different timer interrupts using the LOAD command.

LOAD command format to change value of a variable:

LOAD(Destination Variable, New Value);

Timer Manipulation Usage Definition

LOAD(myvar, TIMERx);
read the remaining time value before
TIMERx expires

LOAD(TIMERx, duration);
run TIMERx once based on the duration
value specified

LOAD(TIMERx, duration, repeat);
run TIMERx multiple times based on repeat
value and the duration value

LOAD(TIMERx, 0); clear and reset TIMERx

Fig. 3.87 Table showing how timer interrupts in iDev can be manipulated

2012 iDev Programming Guide Itron

Austin Barlis

150

Example Usage Definition

LOAD(TIMER2,1000); TIMER2 runs once and expires after 1000
ms (1 second)

LOAD(TIMER4,500,5); TIMER4’s duration is repeated 5 times with
each duration at 500 ms

LOAD(TIMER6,1000,0); TIMER9 runs forever, expiring every 1000
ms (1 second)

LOAD(TIMER3,0); clear and reset TIMER3

LOAD(TIMER7,time); TIMER7 runs once and expires after the
duration value specified in the variable
time

LOAD(myvar,TIMER4); read the remaining time left in TIMER4 and
store it as an integer in variable myvar

Fig. 3.88 Example table demonstrating how manipulation on timer interrupts is applied

3.9. DELAY – WAIT
In all programming languages, delays are present and always used for different purposes.

The equivalent of delay in iDev is the use of the WAIT command. The wait command has a

timer accuracy of 1 ms ± 200 ns. The unit of the value specified in the delay is in milliseconds

(1000 ms = 1 ms) and the maximum value that can be used is 4,294,967,295 e.g. the line

WAIT(5000) placed inside a function would cause the function to be delayed by 5 seconds

every time the function is called/ran.

WAIT command format:

WAIT(Duration);

If the WAIT(duration) command is within a function called from a KEY command then further

key presses will be ignored. Each touch key press function must be processed to completion

before another can be processed. The interrupts and key presses still occur during the wait

period and can be processed. In essence, other serial interrupts will continue to run whilst

the WAIT command is being processed but the associated INT with the WAIT command will

not get called until after the delay has finished.

2012 iDev Programming Guide Itron

Austin Barlis

151

4. INTERFACES AND COMMUNICATION
The Itron SMART TFTs have the capability to connect to an external device or module through its various

interfaces. An interface provides interaction between external components to the Itron SMART tft, this

increases the capability that the Itron SMART tft can achieve e.g. the lighting in a room can be controlled

by an Itron SMART tft through an interface. This gives developers the ability to control specific ports and

manipulate the settings to fit their desired purpose. The SETUP command in iDev is used to change

certain settings for the different interfaces. There are a total of 7 connectors found in the Itron SMART

TFT for 4.3”, 5.7” and 7.0”. The 3.5” has only got 5 connectors. The command syntax for setting up

interfaces is consistent for all the sizes of TFT modules but this guide will focus on the 4.3” TFT module.

However, if there is a difference in the command format then it will be noted in this guide.

Fig. 4.1 Picture of a 4.3” Itron SMART TFT module indicating the locations of the connectors

2012 iDev Programming Guide Itron

Austin Barlis

152

4.1. RS232 INTERFACE
The RS232 interface on the itron SMART TFT modoule operates at +7V/-3V Output and

+15V/-15V Input logic levels. The hardware lines RTS-CTS and DTR-DSR enable

communication between host and module and are selected by jumpers on the back of the

module. Only one pair can be activated at any one time (RTS-CTS or DTR-DSR). Also if the TFT

module used has RS485 interface available on the module (suffix-K611XXX) then only RTS-

CTS can be used. The location of the jumpers on the back of the module is shown below.

Fig. 4.2 Picture of the back of a 4.3” TFT module indicating the location of the two jumpers for

RTS-CTS or DTR-DSR hardware lines

Note that the location of the jumpers J16 and J15 have always stayed consistent in the

bottom right part on the back of the TFT module for all sizes. The location of the jumper links

are highlighted in red in Fig 4.2.

Which pads to solder J15 - RTS with RS485/DTR Jumper J16 - CTS with RS485/DSR Jumper

Solder pad 1 and pad 2 for RTS if RS485 is fitted for CTS if RS485 is fitted

Solder pad 2 and pad 3 for DTR if RS485 is not fitted for DSR if RS485 is not fitted

Fig. 4.3 Table describing how the jumpers should be soldered or linked together

Before the RS232 interface is used, the correct pin assignments have to be connected first.

There are 10 pins on for the RS232 interface of the TFT module for all the sizes. The TFT

module is the DTE (Data Communications Equipment) device for the application and

diagrams in this Chapter. The RS232 interface is located on CN1 (connector 1) of the TFT

module and the pin assignments are shown on the diagram below.

2012 iDev Programming Guide Itron

Austin Barlis

153

Fig. 4.4 Diagram to show pin assignments of the RS232 interface in the TFT module

RS232 (CN1) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 NC Not Connected (Internally) N/A

2 DTR Data Terminal Ready Output

3 TXD Transmit Data Output

4 CTS Clear To Send Input

5 RXD Receive Data Input

6 RTS Request To Send Output

7 DSR Data Set Ready Output

8 NC Not Connected (Internally) N/A

9 GND Common Ground Input/Output

10 5V 5V power Input/Output

Fig. 4.5 Table describing the pin assignments of the RS232 interface

The Itron SMART TFT modules are powered by 5V and so any 5V pin in any connectors can

act as a power source for the module and the same is applied to the GND (Common Ground)

pin. However, if the TFT module is already powered by 5V then the rest of the 5V pins in the

other connectors act as 5V outputs and the same with the GND (Common Ground) pins. A

typical RS232 connection application between an external host module (DTE-Data Terminal

Equipment) and the TFT display module (DCE-Data Communications Equipment) diagram is

found below. The Itron SMART TFT is referred to as the ‘Display System’ in this diagram.

Fig. 4.6 Diagram displaying how the RS232 interface of the TFT module is connected to a

GND NC

DTR

TXD

CTS

RXD

RTS

DSR

NC 5V

CN1

1

2

3

4 6

5 7

8 10

9

2012 iDev Programming Guide Itron

Austin Barlis

154

typical external module

It is important to remember that the diagram in Fig 4.6 is only meant to represent a general

application when using the RS232 interface; some connections may be different depending

on the how pins were assigned on the external module and its purpose. Once all the

hardware side of the interface is finished, then the software side has to be prepared.

Fig. 4.7 Diagram showing how data is sent and received through the RS232 interface in iDev

The settings for the RS232 interface can be altered using the SETUP command in iDev. The

SETUP command will be used in all the other interfaces as well. The SETUP command is

similar on how it was used in Chapter 1.5 where a system setup is created. It contains a Setup

Header and Setup Body.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (Interface)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

There is also a quick setup command format that is used for the RS232 interface in iDev. This

allows the developer to change the baud rate, the parity and the communication mode of

the RS232 interface using one line. Other specific parameters can also be added after the

quick setup line provided that the quick setup line is the first line in the Setup Body.

SETUP command format for quick setup of the RS232 interface:

Setup Header

SETUP(RS232)

Setup Body

{

set = "BaudParityCommunicationMode";

}

2012 iDev Programming Guide Itron

Austin Barlis

155

When using the quick setup type, there are expected values for each sub-parameter. Each

one is defined in the table below.

Sub-parameter
Expected
Values

Definition

Baud

48 set the baud rate for the RS232 interface to 4800

96 set the baud rate for the RS232 interface to 9600

192 set the baud rate for the RS232 interface to 19200

384 set the baud rate for the RS232 interface to 38400

768 set the baud rate for the RS232 interface to 76800

1150 set the baud rate for the RS232 interface to 115000

Parity

N (None) remove the parity bit data sent through the RS232

O (Odd) set the parity bit of the data sent through RS232 to odd

E (Even) set the parity bit of the data sent through RS232 to even

Communication
Mode

Y
enable the receive and transmit interface of the RS232
interface (i.e. rxi = Y; and txi = N;)

N
disable the receive and transmit interface of the RS232
interface (i.e. rxi = N; and txi = N;)

C
set the receive and transmit interface of the RS232 interface as
a command processing source (i.e. rxi = C; and txi = C;)

E

set the receive interface of the RS232 interface as a command
processing source and transmit interface of the RS232
interface to echo command processing mode (i.e. rxi = C and
txi = E;)

D
set the receive interface of the RS232 interface to receive
debugging data and transmit interface of the RS232 interface
to echo command processing mode (i.e. rxi = D and txi = E;)

Fig. 4.8 Table defining the sub-parameter values when using the quick setup command for

the RS232 interface

When using any interfaces such as the RS232 interface, it is important to enable the interface

first by using the SETUP command in the TU480.mnu file. There are various setup parameters

that can be altered in the RS232 interface. Similar on how the style parameters are defined,

when a setup parameter is not defined in the main menu file then the default value of that

particular setup parameter is assumed and used.

RS232 setup parameters

Parameter Expected Values Definition

baud 110 to 6,250,000

 set the baud rate value for the RS232 interface (default =
19200)

 any value can be set to allow trimming for deviating clocks i.e.
34850

 if unsure what baud rate is, then refer to the Glossary (Chapter
10) of this guide for further explanation

data

5
 set the number of data bits processed per data transmission

through the RS232 interface to 5

6
 set the number of data bits processed per data transmission

through the RS232 interface to 6

7
 set the number of data bits processed per data transmission

through the RS232 interface to 7

8
 set the number of data bits processed per data transmission

through the RS232 interface to 8 (default)

2012 iDev Programming Guide Itron

Austin Barlis

156

stop

1
 set the number of stop bits processed per data transmission

through the RS232 interface to 1 bit (default)

2
 set the number of stop bits processed per data packet through

the RS232 interface to 2 bits

15
 set the number of stop bits processed per data packet through

the RS232 interface to 1.5 bits

parity

O (Odd)
 set the parity bit of the data sent through RS232 to odd

 if unsure what parity is refer to the glossary of this guide

E (Even)  set the parity bit of the data sent through RS232 to even

N (None)  remove the parity bit data sent through the RS232 (default)

M (Mark)  set the parity bit of the data sent through RS232 to a mark??

S (Space)  set the parity bit of the data sent through RS232 to a space??

rxi

Y  enable the receive interface of the RS232 interface

N  disable the receive interface of the RS232 interface (default)

C
 set the receive interface of the RS232 interface as a command

processing source

D
 set the receive interface of the RS232 interface to receive

debugging data

proc

 termination characters can be specified to generate an interrupt to process a string
of data

 NB when sending commands (in command mode where rxi = C) to the module,
processing only occurs when \\0D or 0D hex is received e.g. TEXT(mytext, “hello
world”);; \\0D

all;  trigger on all received characters (default)

CRLF;
 trigger on a carriage return (CR) followed by line feed (LF = 0Dh

0A)

CR;
 trigger on carriage return (CR = 0dH) in command mode where

rxi = C;

LF;  trigger on line feed (LF = 0Ah)

NUL;  trigger on NUL (00h)

\\xx;  trigger on xxh (specify hex value)

"ABCD";  string in format defined by SYSTEM encode parameter

"\\xx\\xx";  string in format defined by SYSTEM encode parameter

procDel Y or N
 keep (Y) or remove (N) the termination character(s) before

processing (default = N)

procNum 0 to 16,780,000
 interrupt on n bytes received as alternative to proc and procDel

parameters (default = 0)

rxb 1 to 16,780,000
 specify the size of the receive buffer in bytes (default = 8192

bytes)

txi

Y  enable the transmit interface of the RS232 interface

N  disable the transmit interface of the RS232 interface (default)

C
 set the transmit interface of the RS232 interface as a command

processing source

E
 set the transmit interface of the RS232 interface to echo

command processing mode

txb 1 to 16,780,000
 specify the size of transmit buffer in bytes (default = 8192

bytes)

encode

 set the data encode mode to suit the purpose of the RS232 interface

s
 set data encode to 8 bit ASCII data

 codes 00-1F and 80-FF are converted to ASCII "\\00" - "\\1D"
and "\\80" - "\\FF" respectively (default)

2012 iDev Programming Guide Itron

Austin Barlis

157

sr

 set data encode to 8 bit ASCII raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as ASCII+ data

sd
 set data encode to 8 bit ASCII raw data bytes

 all bytes are processed as raw data

w
 set data encode to UNICODE – HEX Char x 4 = U16 (Most

significant hex-pair first) "ABCD" -> \\ABCD

wr

 set data encode to 8 bit UNICODE raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UNICODE+ data??

wd
 set data encode to 8 bit UNICODE raw data bytes

 all bytes are processed as raw data

m

 set data encode to 8 bit UTF8 raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UTF8+ data??

mr
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

md
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

D8M
 set data encode to 8 bit data with U16’s, U32’s etc output most

significant byte first

 the same as data encode sd

D8L
 set data encode to 8 bit data with U16’s, U32’s etc output least

significant byte first

D16M

 set data encode to 16 bit data with bytes processed as most
significant byte first

 interrupt occurs after two bytes

 the same as data encode wd

D16L
 set data encode to 16 bit data with bytes processed as least

significant byte first

 interrupt occurs after two bytes

D32M

 set data encode to 32 bit data with bytes processed as most
significant byte first

 interrupt occurs after four bytes

 the same as data encode md

D32L
 set data encode to 32 bit data with bytes processed as least

significant byte first

 interrupt occurs after four bytes

sh or h8m or h8l  set data encode to ASCII – HEX Char x 2 = U8 e.g. "A8" -> \\A8

h16m
 set data encode to ASCII – HEX Char x 4 = U16 (most significant

hex-pair first) e.g. "ABCD" -> \\ABCD

h16l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) e.g. "ABCD" -> \\CDAB

h32m
 set data encode to ASCII – HEX Char x 4 = U32 (most significant

hex-pair first) "12345678" -> \\12345678

h32l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) "12345678" -> \\78654321

flow

N  set the handshaking to NONE (default)

H  set the flow for handshaking to hardware RTS/CTS or DTR/DSR

S  set the flow for handshaking to software XON/XOFF

Fig. 4.9 Table defining the RS232 interface setup parameters

2012 iDev Programming Guide Itron

Austin Barlis

158

The value of the Interface parameter has to be changed to RS2 when setting up the RS232

interface in iDev as seen in the example.

Fig. 4.10 Example code showing how the RS232 interface is setup is done in iDev

The structure of the SETUP command is similar to the STYLE command in iDev. Specific setup

parameter’s value can be changed or updated using the LOAD command dot operator,

similar on how specific style parameters are updated. It is possible to use this method to

change the set parameter for a quick setup interface but it is not recommended, as this

would cause a lot of grief to the developer to set the sub parameter values.

LOAD command format to update/change specific setup parameters:

LOAD(Interface.Parameter, New Parameter Value);

Fig. 4.11 Example code demonstrating how the LOAD command with the dot operator is used

to update setup parameters for the RS232 Interface

Due to the complexity, the required hardware changes and peripheral using the RS232

interface it would not be possible to create a ‘basic’ example project that can be included in

this guide. For an example project that uses the RS232 interface, download the example

//FILENAME: TU480a.mnu

SETUP(RS2) //

{

baud = 34850; //

data = 7; //

stop = 2; //

parity = N; //

rxi = C; //

proc = all; //

procDel = Y; //

procNum = 5; //

rxb = 5250; //

txi = E; //

txb = 5250; //

encode = sr; //

flow = N; //

}

SETUP(RS2) //or a quick setup combination

{

set = "768NC"; //

}

SETUP(RS2) //or a mixture of both setup types

{

set = "768NC"; //

data = 5; //

proc = all; //

encode = mr; //

}

//FILENAME: TU480a.mnu

FUNC(updrs2func) //

{

LOAD(RS2.proc,"CRLF"; //

LOAD(RS2.flow,"H"; //

LOAD(RS2.encode,"m"; //

}

2012 iDev Programming Guide Itron

Austin Barlis

159

project from the website (link here) named ‘RS232 Raw Data and Pointer Demonstration

Project’. There are new iDev commands in this example project that are used in manipulating

interfaces such as interrupts. The INT (for Interrupts) command is introduced and explained

in Chapter 4.7 of this guide and processing data is explained in Chapter 4.8.

4.2. RS422/RS485 INTERFACE
The RS422/485 interface is only available on the TFT module with suffix-K611XXX. The

communication of the RS422/RS485 interface in iDev can be set to either Full Duplex(RS422)

or Half Duplex(RS485) (If unsure on what Full Duplex or Half Duplex is, refer to the Glossary

in Chapter 10 of this guide). This is achieved by soldering certain pins on the back of the

module in the jumper highlighted below.

Fig. 4.12 Picture of the back of a 4.3” TFT module indicating the location of the jumper to set

the communication mode of the RS485 interface

The location of the jumper J8 varies in different PCB boards but most of them are located in

the bottom right part on the back of the module as shown above. The location of the jumper

link J8 is highlighted in RED in the diagram in Fig 4.12. For Full Duplex (RS422)

communication mode, solder pin 1 and pin 2 together and for Half Duplex (RS485)

communication mode, solder pin 2 and pin 3 together in jumper J8. The default

communication mode is Full Duplex so pin 1 and pin 2 are already linked or connected on all

the TFT modules. If the developer requires the use of Half Duplex mode then the solder links

between pin 1 and 2 should be removed first before soldering pin 2 and pin 3 together. This

arrangement of jumper pins applies to all the sizes of TFT. If unsure about the definition of

full duplex or half duplex then refer to the Glossary in Chapter 10 of this guide.

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/RS232C&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

160

 Fig. 4.13 Diagram to show pin assignments of the RS422/RS485 interface in the TFT module

RS422/RS485 (CN1) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 T+
Non-Inverting Transmit
Data for Half Duplex
communication mode

Output

2 R- Inverting Receive Data Input

3 TXD Transmit Data Output

4 CTS Clear To Send Input

5 RXD Receive Data Input

6 RTS Request To Send Output

7 R+
Non-Inverting Receive
Data for Half Duplex
communication mode

Input

8 T- Inverting Receiver Data Output

9 GND Common Ground Input/Output

10 5V 5V power Input/Output

Fig. 4.14 Table describing the pin assignments of the RS422/RS485 interface

The Itron SMART TFT modules are powered by 5V and so any 5V pin in any connectors can

act as a power source for the module and the same is applied to the GND (Common Ground)

pin. However, if the TFT module is already powered by 5V then the rest of the 5V pins in the

other connectors act as 5V outputs and the same with the GND (Common Ground) pins. A

typical RS422/RS485 connection application between an external host module (DTE-Data

Terminal Equipment) and the TFT display module (DCE-Data Communications Equipment)

diagram is found in Fig 4.15 and Fig 4.12. The Itron SMART TFT is referred to as the ‘Display

System’ in the diagrams.

GND T+ TXD

CTS

RXD

RTS T- 5V R-

R+

CN1

1

2

3

4

5

6

7

8

9

10

2012 iDev Programming Guide Itron

Austin Barlis

161

Fig. 4.15 Diagram displaying how the RS422 interface of the TFT module is connected to a

typical external module

Fig. 4.16 Diagram displaying how the RS485 interface of the TFT module is connected to a

typical external module

It is important to remember that the diagrams in Fig 4.15 and 4.16 is only meant to represent

a general application when using the RS422/RS485 interface; some connections may be

different depending on the how pins were assigned on the external module and its purpose.

Once all the hardware side of the interface is finished, then the software side has to be

prepared. The settings for the RS422/RS485 interface can be altered using the SETUP

command in iDev. The SETUP command is similar on how it was used in Chapter 1.5 where a

system setup is created. It contains a Setup Header and Setup Body.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (Interface)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

Similar to the RS232 interface, there is also a quick setup command format that is used for

the RS485 interface in iDev. This allows the developer to change the baud rate, the parity

and the communication mode of the RS422/RS485 interface using one line. Other specific

parameters can also be added after the quick setup line provided that the quick setup line is

the first line in the Setup Body.

2012 iDev Programming Guide Itron

Austin Barlis

162

SETUP command format for quick setup of the RS422/RS485 interface:

Setup Header

SETUP(RS4)

Setup Body

{

set = "BaudParityCommunicationMode";

}

When using the quick setup type, there are expected values for each sub-parameter. Each

one is defined in the table below.

Sub-parameter
Expected
Values

Definition

Baud

48 set the baud rate for the RS422/RS485 interface to 4800

96 set the baud rate for the RS422/RS485 interface to 9600

192 set the baud rate for the RS422/RS485 interface to 19200

384 set the baud rate for the RS422/RS485 interface to 38400

768 set the baud rate for the RS422/RS485 interface to 76800

1150 set the baud rate for the RS422/RS485 interface to 115000

Parity

N (None)
remove the parity bit data sent through the RS422/RS485
(default)

O (Odd) set the parity bit of the data sent through RS422/RS485 to odd

E (Even)
set the parity bit of the data sent through RS422/RS485 to
even

Communication
Mode

Y
enable the receive and transmit interface of the RS422/RS485
interface (i.e. rxi = Y; and txi = N;)

N
disable the receive and transmit interface of the RS422/RS485
interface (i.e. rxi = N; and txi = N;)

C
set the receive and transmit interface of the RS422/RS485
interface as a command processing source (i.e. rxi = C; and txi
= C;)

E

set the receive interface of the RS422/RS485 interface as a
command processing source and transmit interface of the
RS422/RS485 interface to echo command processing mode
(i.e. rxi = C and txi = E;)

D

set the receive interface of the RS422/RS485 interface to
receive debugging data and transmit interface of the
RS422/RS485 interface to echo command processing mode
(i.e. rxi = D and txi = E;)

Fig. 4.16 Table defining the sub-parameter values when using the quick setup command for

the RS422/RS485 interface

When using any interfaces such as the RS422/RS485 interface, it is important to enable the

interface first by using the SETUP command in the TU480.mnu file. Similar on how the style

parameters are defined, when a setup parameter is not defined in the main menu file, then

the default value of that particular setup parameter is assumed and used.

2012 iDev Programming Guide Itron

Austin Barlis

163

RS422/RS485 setup parameters

Parameter Expected Values Definition

baud 110 to 6,250,000

 set the baud rate value for the RS422/RS485 interface (default
= 19200)

 any value can be set to allow trimming for deviating clocks i.e.
34850

 if unsure what baud rate is, then refer to the Glossary (Chapter
10) of this guide for further explanation

data

5
 set the number of data bits processed per data transmission

through the RS422/RS485 interface to 5

6
 set the number of data bits processed per data transmission

through the RS422/RS485 interface to 6

7
 set the number of data bits processed per data transmission

through the RS422/RS485 interface to 7

8
 set the number of data bits processed per data transmission

through the RS422/RS485 interface to 8 (default)

stop

1
 set the number of stop bits processed per data transmission

through the RS422/RS485 interface to 1 bit (default)

2
 set the number of stop bits processed per data packet through

the RS422/RS485 interface to 2 bits

15
 set the number of stop bits processed per data packet through

the RS422/RS485 interface to 1.5 bits

parity

O (Odd)
 set the parity bit of the data sent through RS422/RS485 to odd

 if unsure what parity is refer to the glossary of this guide

E (Even)  set the parity bit of the data sent through RS422/RS485 to even

N (None)
 remove the parity bit data sent through the RS422/RS485

(default)

M (Mark)
 set the parity bit of the data sent through RS422/RS485 to a

mark??

S (Space)
 set the parity bit of the data sent through RS422/RS485 to a

space??

rxi

Y  enable the receive interface of the RS422/RS485 interface

N
 disable the receive interface of the RS422/RS485 interface

(default)

C
 set the receive interface of the RS422/RS485 interface as a

command processing source

D
 set the receive interface of the RS422/RS485 interface to

receive debugging data

proc

 termination characters can be specified to generate an interrupt to process a string
of data

 NB when sending commands (in command mode where rxi = C) to the module,
processing only occurs when \\0D or 0D hex is received e.g. TEXT(mytext, “hello
world”);; \\0D

all;  trigger on all received characters (default)

CRLF;
 trigger on a carriage return (CR) followed by line feed (LF = 0Dh

0A)

CR;
 trigger on carriage return (CR = 0dH) in command mode where

rxi = C;

LF;  trigger on line feed (LF = 0Ah)

NUL;  trigger on NUL (00h)

\\xx;  trigger on xxh (specify hex value)

"ABCD";  string in format defined by SYSTEM encode parameter

"\\xx\\xx";  string in format defined by SYSTEM encode parameter

2012 iDev Programming Guide Itron

Austin Barlis

164

procDel Y or N
 keep (Y) or remove (N) the termination character(s) before

processing (default = N)

procNum 0 to 16,780,000
 interrupt on n bytes received as alternative to proc and procDel

parameters (default = 0)

rxb 1 to 16,780,000
 specify the size of the receive buffer in bytes (default = 8192

bytes)

txi

Y  enable the transmit interface of the RS422/RS485 interface

N
 disable the transmit interface of the RS422/RS485 interface

(default)

C
 set the transmit interface of the RS422/RS485 interface as a

command processing source

E
 set the transmit interface of the RS422/RS485 interface to echo

command processing mode

txb 1 to 16,780,000
 specify the size of transmit buffer in bytes (default = 8192

bytes)

encode

 set the data encode mode to suit the purpose of the RS485 interface

s
 set data encode to 8 bit ASCII data

 codes 00-1F and 80-FF are converted to ASCII "\\00" - "\\1D"
and "\\80" - "\\FF" respectively (default)

sr

 set data encode to 8 bit ASCII raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as ASCII+ data

sd
 set data encode to 8 bit ASCII raw data bytes

 all bytes are processed as raw data

w
 set data encode to UNICODE – HEX Char x 4 = U16 (Most

significant hex-pair first) "ABCD" -> \\ABCD

wr
 set data encode to 8 bit UNICODE raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UNICODE+ data??

wd
 set data encode to 8 bit UNICODE raw data bytes

 all bytes are processed as raw data

m
 set data encode to 8 bit UTF8 raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UTF8+ data??

mr
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

md
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

D8M
 set data encode to 8 bit data with U16’s, U32’s etc output most

significant byte first

 the same as data encode sd

D8L
 set data encode to 8 bit data with U16’s, U32’s etc output least

significant byte first

D16M

 set data encode to 16 bit data with bytes processed as most
significant byte first

 interrupt occurs after two bytes

 the same as data encode wd

D16L
 set data encode to 16 bit data with bytes processed as least

significant byte first

 interrupt occurs after two bytes

2012 iDev Programming Guide Itron

Austin Barlis

165

D32M

 set data encode to 32 bit data with bytes processed as most
significant byte first

 interrupt occurs after four bytes

 the same as data encode md

D32L
 set data encode to 32 bit data with bytes processed as least

significant byte first

 interrupt occurs after four bytes

sh or h8m or h8l  set data encode to ASCII – HEX Char x 2 = U8 e.g. "A8" -> \\A8

h16m
 set data encode to ASCII – HEX Char x 4 = U16 (most significant

hex-pair first) e.g. "ABCD" -> \\ABCD

h16l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) e.g. "ABCD" -> \\CDAB

h32m
 set data encode to ASCII – HEX Char x 4 = U32 (most significant

hex-pair first) "12345678" -> \\12345678

h32l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) "12345678" -> \\78654321

flow

N  set the handshaking to NONE (default)

H  set the flow for handshaking to hardware RTS/CTS or DTR/DSR

S  set the flow for handshaking to software XON/XOFF

duplex
H (Half Duplex)

 set the communication mode to Half Duplex (RS485)

 Half Duplex uses connector CN1(Connector 1) with pins 1 and 8

F(Full Duplex)  set the communication mode to Full Duplex (RS422) (default)

Fig. 4.17 Table defining the RS422/RS485 interface setup parameters

Fig. 4.18 Example code showing how the RS422/RS485 interface setup is done in iDev

//FILENAME: TU480a.mnu

SETUP(RS4) //

{

baud = 34850; //

data = 7; //

stop = 2; //

parity = N; //

rxi = C; //

proc = all; //

procDel = Y; //

procNum = 5; //

rxb = 5250; //

txi = E; //

txb = 5250; //

encode = sr; //

flow = N; //

duplex = F; //

}

SETUP(RS4) //or a quick setup combination

{

set = "768NC"; //

}

SETUP(RS4) //or a mixture of both setup types

{

set = "768NC"; //

data = 5; //

proc = all; //

encode = mr; //

}

2012 iDev Programming Guide Itron

Austin Barlis

166

The structure of the SETUP command is similar to the STYLE command in iDev. Specific setup

parameter’s value can be changed or updated using the LOAD command dot operator,

similar on how specific style parameters are updated. It is possible to use this method to

change the set parameter for a quick setup interface but it is not recommended, as this

would cause a lot of grief to the developer to set the sub parameter values.

LOAD command format to update/change specific setup parameters:

LOAD(Interface.Parameter, New Parameter Value);

Fig. 4.19 Example code demonstrating how the LOAD command with the dot operator is used

to update setup parameters for the RS422/RS485 Interface

Unfortunately there is no example project that uses the RS422/RS485 interface from the

Itron TFT website but the RS232 and RS422/RS485 interface are really similar and so the

example project that uses the RS232 interface can be altered as a template or a starting

point for a beginner developer. The example project can be downloaded from the website

(link here) named ‘RS232 Raw Data and Pointer Demonstration Project’. There are new iDev

commands in this example project that are used in manipulating interfaces such as

interrupts. The INT (for Interrupts) command is introduced and explained in Chapter 4.7 of

this guide and processing data is explained in Chapter 4.8.

//FILENAME: TU480a.mnu

FUNC(updrs4func) //

{

LOAD(RS4.proc,"CRLF"; //

LOAD(RS4.flow,"H"; //

LOAD(RS4.encode,"m"; //

}

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/RS232C&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

167

4.3. CMOS ASYNCHRONOUS INTERFACE (AS1, AS2, DBG)
There are three CMOS Asynchronous interfaces available in iDev, namely AS1, AS2 and DBG

(debugging). All of which operate at 3.3V logic level (definition in Chapter 10) but the AS1 has

the option to work at both 3.3V and 5V logic levels. The AS1 interface is located in connector

3 of the module as shown below.

Fig. 4.20 Diagram to show pin assignments of the AS1 interface in the TFT module with the

jumper link highlighted

The jumper link highlighted in RED, allows the developer to select the voltage output level

for pin 1 (3V/5V) in connector 3(CN3). The developer must either link or solder together the

Select pad (pad 2) of the jumper to 5V pad if 5V is required to come out of pin 1(in CN3) or

the 3V pad to the Select pad (pad 2 of the jumper) for 3.3V output. This applies to all the

module sizes with the similar configuration in the diagram but some TFT versions and sizes

do not have this jumper link. This means that the voltage level input/output at pin 1 in

connector 3(CN3) is fixed at 5V. The default logic level for the AS1 interface that all TFT sizes

come with is 3.3V. If however, the model number suffix of the TFT module is K6XXXXXXXA

then this means that the AS1 interface logic level of that particular TFT module is 5V. The

Itron SMART TFT modules are powered by 5V and so any 5V pin in any connectors can act as

a power source for the module and the same is applied to the GND (Common Ground) pin.

However, if the TFT module is already powered by 5V then the rest of the 5V pins in the

other connectors act as 5V outputs and the same is applied with the GND (Common Ground)

pins; an external module that is connected to the TFT module can either be powered by 3.3V

or 5V from the module in pin 1.

3/5V

/RES NU HB NU

SI

NU

SO MB GND

CN3

1

2

3

4 6

5 7

8

9

10 1

2

3

Select

5V

3V

2012 iDev Programming Guide Itron

Austin Barlis

168

AS1 (CN3) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 3/5V 3.3V (Output) or 5V (Input or Output) power Input/Output

2 NU Not Used (Do not connect to anything) Input

3 SI Serial In Input

4 NU Not Used (Do not connect to anything) Input

5 GND Common Ground Input/Output

6 NU Not Used (Do not connect to anything) N/A

7 SO Serial Out Output

8 /RES Reset Pin (Active Low) Input

9 MB Module Busy Input

10 HB Host Busy Output

Jumper Link (Highlighted in RED) for AS1 in CN3

Pad Number Pad Assignment Definition Link

1 5V 5V Select
Solder to Select (pad 2) for 5V input/output at
pin 1 in CN3

2 Select Select N/A

3 3V 3.3V Select
Solder to Select (pad 2) for 3.3V output at pin 1
in CN3

Fig. 4.21 Table describing the pin and pad assignments of the AS1 interface

There is another Asynchronous Interface called AS2 available on the Itron SMART TFT

module but the pins for the AS2 are found in connector 7 (CN7) and connector 4 (CN4).

Fig. 4.22 Diagram to show pin assignments of the AS2 interface in the TFT module with the

jumper link highlighted

Similar to the connector layout for AS1, the AS2 also has a jumper link to set the voltage

output levels on pin 4 in connector 4 (CN4) to either 5V or 3.3V. This applies to all the

module sizes with the similar configuration in the diagram but some TFT versions do not

have this jumper link have the voltage level input/output at pin 4 in connector 4(CN4) fixed

at 5V. Unlike the AS1 interface, the AS2 interface has a fixed logic level operating at 3.3V.

GND GND

GND

3/5V

5V

HB

CN4

CN7

1

2 4

3 5

6

4

3

10

9

1
2
3

Select

3V

5V

SI

SO

3V

MB

2012 iDev Programming Guide Itron

Austin Barlis

169

AS2 (CN7) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 5V 5V power Input/Output

2 GND Common Ground Input/Output

3 3V 3.3V (Output) power Output

4 GND Common Ground Input/Output

5 SI Serial In Output

6 SO Serial Out Input

AS2 (CN4) Pin Assignment Definition

3 GND Common Ground Input/Output

4
3/5V

3.3V (Output) or 5V (Input or Output)
power

Input/Output

9 HB Host Busy Input

10 MB Module Busy Output

Jumper Link (Highlighted in RED) for AS2 in CN7 and CN4

Pad Number Pad Assignment Definition Link

1 5V 5V Select
Solder to Select (pad 2) for 5V input/output
at pin 4 in CN4

2 Select Select N/A

3 3V 3.3V Select
Solder to Select (pad 2) for 3V output at pin
4 in CN4

Fig. 4.23 Table describing the pin and pad assignments of the AS2 interface

The AS2 interface does not have an allocated connector set of pins to it so unfortunately the

pin assignments are found in connector 4(CN4) and connector 7(CN7) as seen in Fig. 4.23.

Having a separate connector set however, enables the developer to use the AS1 and AS2

interfaces simultaneously. As mentioned before, the TFT module is powered by 5V and so pin

4 in connector 4(CN4) can also act as an input to power the TFT module or an output to

power an external module. The Itron SMART TFT is referred to as the ‘Display System’ in the

diagram below.

Fig. 4.24 Diagram displaying how the AS1/AS2 interface of the TFT module is connected to a

typical external module

The diagram in Fig. 4.24 represents a general application when using the AS1 and AS2

interface; some connections may be different depending on how the pins were assigned on

the external module and its purpose. The host busy line (HB) stops the module from sending

data to the host. (More Module busy and Host busy explanation here). The use of the HB and

MB busy lines are optional and can be connected together if not required. It is important to

remember that the AS1 and AS2 interface can be used simultaneously due to the separate

2012 iDev Programming Guide Itron

Austin Barlis

170

locations of the pin connectors. The Itron SMART TFT module has an interface allocated for

debugging purposes that solely consist of receive data and transmit data lines. The developer

can use this interface to check if the TFT module is correctly communication with an external

module connected to it just using the two basic transmission lines. The connector 6 (CN6) for

the DBG (debug) interface is located in the bottom right part on the back of the Itron SMART

TFT module.

Fig. 4.25 Diagram to show pin assignments of the DBG interface on the back of the TFT

module

DBG (CN6-back) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 5V 5V power Input/Output

2 GND Common Ground Input/Output

3 DRXD Debug Receive Data Input

4 DTXD Debug Transmit Data Output

Fig. 4.26 Table describing the pin assignments of the DBG interface

The Itron SMART TFT is referred to as the ‘Display System’ in the diagram below.

Fig. 4.27 Diagram displaying how the DBG interface of the TFT module is connected to a

typical external module

GND

DRXD

DTXD

5V

CN6

1

2

3

4

2012 iDev Programming Guide Itron

Austin Barlis

171

When the module is powered on, the micro SD card slot and the NAND memory are scanned

for the main menu file (TUXXXa.mnu). If the main menu file and the project files are located

in NAND, then the project would always run if there is no micro SD card slot present. The

only way to overwrite or control what is stored in NAND is by uploading the main menu file

via micro SC card. However, if there is no micro SD card available, the code cannot be

changed unless some of the interfaces are enabled to allow data transfer. In iDev, it is

possible to initialise some interfaces of the TFT module by applying a temporary link to pin 3

(DRXD) and pin 4 (DTXD) in CN6 of the module. The link has to be applied before the module

is powered on for the initialisation of the interfaces to occur successfully. The interfaces:

RS232, AS1, I2C and USB are enabled and the table below describes their parameters when

the link is detected. The other parameters that are not specified use the default values.

RS232 setup parameters (see Chapter 4.1)

Parameter Value

baud 115200

data 8

stop 1

parity N

flow H

AS1 setup parameters (see Chapter 4.3)

Parameter Value

baud 500000

data 8

stop 1

parity N

flow H

I2C setup parameters (see Chapter 4.5)

Parameter Value

addr \\6E

USB setup parameters (see Chapter 8.5)

Parameter Value

rxi C

txi Y

Fig 4.28 Table describing the setup parameters of the four interfaces enabled

Once all the hardware side of the interface is finished, then the software side has to be

prepared. To give a better picture on how the AS1/AS2 interface on iDev works, this is a

diagram showing how data is processed in the AS1/AS2 interface.

Fig. 4.29 Diagram showing how data is sent and received through the AS1/AS2 interface in

iDev

2012 iDev Programming Guide Itron

Austin Barlis

172

The settings for the AS1/AS2/DBG interface can be altered using the SETUP command in

iDev. The SETUP command is similar on how it was used in Chapter 1.5 where a system setup

is created. It contains a Setup Header and Setup Body.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (Interface)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

Similar to the RS232 interface, there is also a quick setup command format that is used for

the AS1/AS2 interface in iDev. This allows the developer to change the baud rate, the parity

and the communication mode of the AS1/AS2 interface using one line. Other specific

parameters can also be added after the quick setup line provided that the quick setup line is

the first line in the Setup Body.

SETUP command format for quick setup of the AS1/AS2 interface:

Setup Header

SETUP(AS1)

Setup Body

{

set = "BaudParityCommunicationMode";

}

When using the quick setup type, there are expected values for each sub-parameter. Each

one is defined in the table below.

Sub-parameter
Expected
Values

Definition

Baud

48 set the baud rate for the AS1/AS2/DBG interface to 4800

96 set the baud rate for the AS1/AS2/DBG interface to 9600

192 set the baud rate for the AS1/AS2/DBG interface to 19200

384 set the baud rate for the AS1/AS2/DBG interface to 38400

768 set the baud rate for the AS1/AS2/DBG interface to 76800

1150 set the baud rate for the AS1/AS2/DBG interface to 115000

Parity

N (None) remove the parity bit data sent through the AS1/AS2/DBG

O (Odd) set the parity bit of the data sent through AS1/AS2/DBG to odd

E (Even)
set the parity bit of the data sent through AS1/AS2/DBG to
even

Communication
Mode

Y
enable the receive and transmit interface of the AS1/AS2/DBG
interface (i.e. rxi = Y; and txi = N;)

N
disable the receive and transmit interface of the AS1/AS2/DBG
interface (i.e. rxi = N; and txi = N;)

C
set the receive and transmit interface of the AS1/AS2/DBG
interface as a command processing source (i.e. rxi = C; and txi
= C;)

2012 iDev Programming Guide Itron

Austin Barlis

173

E

set the receive interface of the AS1/AS2/DBG interface as a
command processing source and transmit interface of the
RS422/RS485 interface to echo command processing mode
(i.e. rxi = C and txi = E;)

D

set the receive interface of the AS1/AS2/DBG interface to
receive debugging data and transmit interface of the
AS1/AS2/DBG interface to echo command processing mode
(i.e. rxi = D and txi = E;)

Fig. 4.30 Table defining the sub-parameter values when using the quick setup command for

the AS1/AS2/DBG interface

When using any interfaces such as the AS1/AS2/DBG interface, it is important to enable the

interface first by using the SETUP command in the TU480.mnu file. Similar on how the style

parameters are defined, when a setup parameter is not defined in the main menu file, then

the default value of that particular setup parameter is assumed and used.

AS1/AS2/DBG setup parameters

Parameter Expected Values Definition

baud 110 to 6,250,000

 set the baud rate value for the AS1/AS2/DBG interface (default
= 19200)

 any value can be set to allow trimming for deviating clocks i.e.
34850

 if unsure what baud rate is, then refer to the Glossary (Chapter
10) of this guide for further explanation

data

5
 set the number of data bits processed per data transmission

through the AS1/AS2/DBG interface to 5

6
 set the number of data bits processed per data transmission

through the AS1/AS2/DBG interface to 6

7
 set the number of data bits processed per data transmission

through the AS1/AS2/DBG interface to 7

8
 set the number of data bits processed per data transmission

through the AS1/AS2/DBG interface to 8 (default)

stop

1
 set the number of stop bits processed per data transmission

through the AS1/AS2/DBG interface to 1 bit (default)

2
 set the number of stop bits processed per data packet through

the AS1/AS2/DBG interface to 2 bits

15
 set the number of stop bits processed per data packet through

the AS1/AS2/DBG interface to 1.5 bits

parity

O (Odd)
 set the parity bit of the data sent through AS1/AS2/DBG to odd

 if unsure what parity is refer to the glossary of this guide

E (Even)
 set the parity bit of the data sent through AS1/AS2/DBG to

even

N (None)
 remove the parity bit data sent through the AS1/AS2/DBG

(default)

M (Mark)
 set the parity bit of the data sent through AS1/AS2/DBG to a

mark??

S (Space)
 set the parity bit of the data sent through AS1/AS2/DBG to a

space??

rxi

Y  enable the receive interface of the AS1/AS2/DBG interface

N
 disable the receive interface of the AS1/AS2/DBG interface

(default)

C
 set the receive interface of the AS1/AS2/DBG interface as a

command processing source

2012 iDev Programming Guide Itron

Austin Barlis

174

D
 set the receive interface of the AS1/AS2/DBG interface to

receive debugging data

proc

 termination characters can be specified to generate an interrupt to process a string
of data

 NB when sending commands (in command mode where rxi = C) to the module,
processing only occurs when \\0D or 0D hex is received e.g. TEXT(mytext, “hello
world”);; \\0D

all;  trigger on all received characters (default)

CRLF;
 trigger on a carriage return (CR) followed by line feed (LF = 0Dh

0A)

CR;
 trigger on carriage return (CR = 0dH) in command mode where

rxi = C;

LF;  trigger on line feed (LF = 0Ah)

NUL;  trigger on NUL (00h)

\\xx;  trigger on xxh (specify hex value)

"ABCD";  string in format defined by SYSTEM encode parameter

"\\xx\\xx";  string in format defined by SYSTEM encode parameter

procDel Y or N
 keep (Y) or remove (N) the termination character(s) before

processing (default = N)

procNum 0 to 16,780,000
 interrupt on n bytes received as alternative to proc and procDel

parameters (default = 0)

rxb 1 to 16,780,000
 specify the size of the receive buffer in bytes (default = 8192

bytes)

txi

Y  enable the transmit interface of the AS1/AS2/DBG interface

N
 disable the transmit interface of the AS1/AS2/DBG interface

(default)

C
 set the transmit interface of the AS1/AS2/DBG interface as a

command processing source

E
 set the transmit interface of the AS1/AS2/DBG interface to

echo command processing mode

txb 1 to 16,780,000
 specify the size of transmit buffer in bytes (default = 8192

bytes)

encode

 set the data encode mode to suit the purpose of the AS1/AS2/DBG interface

s
 set data encode to 8 bit ASCII data

 codes 00-1F and 80-FF are converted to ASCII "\\00" - "\\1D"
and "\\80" - "\\FF" respectively (default)

sr

 set data encode to 8 bit ASCII raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as ASCII+ data

sd
 set data encode to 8 bit ASCII raw data bytes

 all bytes are processed as raw data

w
 set data encode to UNICODE – HEX Char x 4 = U16 (Most

significant hex-pair first) "ABCD" -> \\ABCD

wr

 set data encode to 8 bit UNICODE raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UNICODE+ data??

wd
 set data encode to 8 bit UNICODE raw data bytes

 all bytes are processed as raw data

m
 set data encode to 8 bit UTF8 raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UTF8+ data??

mr
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

2012 iDev Programming Guide Itron

Austin Barlis

175

md
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

D8M
 set data encode to 8 bit data with U16’s, U32’s etc output most

significant byte first

 the same as data encode sd

D8L
 set data encode to 8 bit data with U16’s, U32’s etc output least

significant byte first

D16M

 set data encode to 16 bit data with bytes processed as most
significant byte first

 interrupt occurs after two bytes

 the same as data encode wd

D16L
 set data encode to 16 bit data with bytes processed as least

significant byte first

 interrupt occurs after two bytes

D32M

 set data encode to 32 bit data with bytes processed as most
significant byte first

 interrupt occurs after four bytes

 the same as data encode md

D32L
 set data encode to 32 bit data with bytes processed as least

significant byte first

 interrupt occurs after four bytes

sh or h8m or h8l  set data encode to ASCII – HEX Char x 2 = U8 e.g. "A8" -> \\A8

h16m
 set data encode to ASCII – HEX Char x 4 = U16 (most significant

hex-pair first) e.g. "ABCD" -> \\ABCD

h16l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) e.g. "ABCD" -> \\CDAB

h32m
 set data encode to ASCII – HEX Char x 4 = U32 (most significant

hex-pair first) "12345678" -> \\12345678

h32l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) "12345678" -> \\78654321

flow

N  set the handshaking to NONE (default)

H
 set the flow for handshaking to hardware HB/MB (only

applicable to AS1)

S  set the flow for handshaking to software XON/XOFF

Fig. 4.31 Table defining the AS1/AS2/DBG interface setup parameters

2012 iDev Programming Guide Itron

Austin Barlis

176

Fig. 4.32 Example code showing how the AS1/AS2/DBG interface setup is done in iDev

The structure of the SETUP command is similar to the STYLE command in iDev. Specific setup

parameter’s value can be changed or updated using the LOAD command dot operator,

similar on how specific style parameters are updated. It is possible to use this method to

change the set parameter for a quick setup interface but it is not recommended, as this

would cause a lot of grief to the developer to set the sub parameter values.

LOAD command format to update/change specific setup parameters:

LOAD(Interface.Parameter, New Parameter Value);

Fig. 4.33 Example code demonstrating how the LOAD command with the dot operator is used

to update setup parameters for the AS1 Interface

Due to the complexity, the required hardware changes and peripheral using the AS1/AS2

interface it would not be possible to create a ‘basic’ example project that can be included in

this guide. There are two example projects found on the website that uses the AS1/AS2

interface. The example projects can be downloaded from the website named ‘Network

Demonstration Project’ (link here). This example project exhibits how an external Ethernet

module connected to the TFT module through AS1 can be used to communicate with

//FILENAME: TU480a.mnu

SETUP(AS1) //

{

baud = 34850; //

data = 7; //

stop = 2; //

parity = N; //

rxi = C; //

proc = all; //

procDel = Y; //

procNum = 5; //

rxb = 5250; //

txi = E; //

txb = 5250; //

encode = sr; //

flow = N; //

}

SETUP(AS2) //or a quick setup combination

{

set = "768NC"; //

}

SETUP(DBG) //or a mixture of both setup types

{

set = "768NC"; //

data = 5; //

proc = all; //

encode = mr; //

}

//FILENAME: TU480a.mnu

FUNC(updas1func) //

{

LOAD(AS1.proc,"CRLF"; //

LOAD(AS1.flow,"H"; //

LOAD(AS1.encode,"m"; //

}

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/Ethernet&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

177

another TFT module that uses the same setup. Another example project that uses the AS1

interface that can also be downloaded from the website is named ‘Transceiver

demonstration’ (link here). This project uses an external wireless module connected to the

TFT modules; this enables the TFT modules to communicate with each other through the AS1

interface wirelessly. These example projects require an advanced level of understanding in

iDev and a good knowledge using the AS1/AS2 interface. There are new iDev commands in

these example projects that are used in manipulating interfaces such as interrupts. The INT

(for Interrupts) command is introduced and explained in Chapter 4.7 of this guide and

processing data is explained in Chapter 4.8.

4.4. SPI (MASTER AND SLAVE) INTERFACE
The SPI (Serial Peripheral Interface) is a synchronous communication interface meaning that

it relies on the clock lines of the bus for data transmission to be synchronised?. This interface

can either be operated in master and slave mode. Multiple slave devices can be connected

and controlled by a single master device. Refer to the Glossary in Chapter 10 for a detailed

description of the master and slave mode in interface communication. In the Itron SMART

TFT, the SPI interface is enabled by soldering the jumper links on the back of the module. The

location of the jumper is always in the bottom right part on the back of the TFT module. This

applies to all the module sizes and versions except the 3.5” module because there is no

jumper link J11 on the back of a 3.5” TFT module.

Fig. 4.34 Diagram indicating the location of the jumper link to enable the SPI interface

The developer must solder/link pads 1 and 2 together, 3 and 4 together, 5 and 6 together, 7

and 8 together to enable the SPI interface on the module. The SPI interface would not work

properly if these solder links between the pads specified are not done. This jumper pin

arrangement applies to all TFT modules except the 3.5” size. The 3.5” module has these

jumper links connected internally already. The SPI interface pins are located in connector 3

(CN3) of the TFT module as shown in the diagram below.

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/Transceiver&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

178

Fig. 4.35 Diagram to show pin assignments of the SPI interface in the TFT module with the

jumper link highlighted

The jumper link highlighted in RED, allows the developer to select the voltage output level

for pin 1 (3V/5V) in connector 3(CN3). The developer must either link or solder together the

Select pad (pad 2) of the jumper to 5V pad if 5V is required to come out of pin 1(in CN3) or

the 3V pad to the Select pad (pad 2 of jumper) for 3.3V. This applies to all the module sizes

with the similar configuration in the diagram but some TFT versions and sizes do not have

this jumper link. This means that the voltage level input/output at pin 4 in connector 3(CN3)

is fixed at 5V. The default logic level for the SPI interface that all TFT sizes come with is 3.3V.

If however, the model number suffix of the TFT module is K6XXXXXXXS then this means that

the SPI interface logic level of that particular TFT module is 5V. The Itron SMART TFT modules

are powered by 5V and so any 5V pin in any connectors can act as a power source for the

module and the same is applied to the GND (Common Ground) pin. However, if the TFT

module is already powered by 5V then the rest of the 5V pins in the other connectors act as

5V outputs and the same is applied with the GND (Common Ground) pins. This means that an

external module that is connected to the TFT module can either be powered by 3.3V or 5V

from the module in pin 1.

SPI (CN3) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 3/5V
3.3V (Output) or 5V (Input or
Output) power

Input/Output

2 SCK Serial Clock Output from Master

3 /SS Slave Select (Active Low) Output from Master

4 MOSI Master Out Slave In Output from Master

5 GND Common Ground Input/Output

6 MISO Master In Slave Out Output from Slave

7 /IRQ Interrupt Request (Active Low) Output form Slave

1

2

3

4 6

5 7

8

9

10 1

2

3

3/5V

/RES HB

MB GND

CN3

Select

5V

3V

SCK

/SS

MOSI MISO

/IRQ

2012 iDev Programming Guide Itron

Austin Barlis

179

8 /RES Reset Pin (Active Low) Input to Slave

9 MB Module Busy Output from Slave

10 HB Host Busy Output from Master

Jumper Link (Highlighted in RED) for AS1 in CN3

Pad Number Pad Assignment Definition Link

1 5V 5V Select
Solder to Select (pad 2) for 5V input/output at
pin 1 in CN3

2 Select Select N/A

3 3V 3.3V Select
Solder to Select (pad 2) for 3V output at pin 1
in CN3

Fig. 4.36 Table describing the pin assignments of the SPI interface

As mentioned before, SPI interfaces can work as Master or Slave mode. The first scenario is

to show the typical connections needed when the Itron SMART TFT is the SPI Slave device

and the external module is the SPI Master device. The Itron SMART TFT is referred to as the

’SPI Slave (TFT)’ in the diagram below.

Fig. 4.37 Diagram to show typical connections between an external device (SPI Master) and

the TFT module (SPI Slave)

The Diagram in Fig 4.37 is meant to represent a general application when using the SPI

interface, the TFT module being the Slave device; some connections may be different

depending on how the pins were assigned on the external module and its purpose. For

advanced developers that have used the SPI interface before, the pin connections may be

straightforward but for beginners a brief explanation and introduction about the pin

connections would help. The SCK or Serial Clock is connected to determine and set the speed

of serial communication between the master and the slave module. The master specifies the

speed or rate of data transmission and the slave has to yield to this speed. The MISO and

MOSI pins are the equivalent of the usual TXD and RXD pins found in other interfaces such as

the RS232. The names of these pins are self-explanatory as to how these pins should be

connected. The /SS pin which stands for Slave Select is connected to begin serial

communication between master and slave. This pin in the TFT module is active LOW, which

means that data transmission starts when the SPI Slave detects this input pin as LOW. The

/SS pin does not always appear as Serial Select in other SPI devices, this pin is sometimes

called /CS (Chip Select) or /STE (Slave Transmit Enable). However, if the SPI Master device

2012 iDev Programming Guide Itron

Austin Barlis

180

does not have an allocated /SS pin, a single digital I/O interface can be used and serve the

same purpose. There is also a scenario when the SPI Master device does not have a /SS or a

usable digital I/O interface, then the /SS pin of the TFT module have to be pulled LOW to

enable communication between the devices. The /SS pin can also be used as and enable pin

if the other devices are not connected to the serial line. The HB (Host Busy) pin stops the

module from sending data to the host. (More Module busy and Host busy explanation here).

The use of the HB and MB busy lines are optional and can be connected together if not

required. If the MB (Module Busy) pin is set HIGH, then the input buffer is full or disabled.

The /IRQ means Interrupt Request and is useful in communication where the master

requires notification to allow data coming back to the SPI Master. An Interrupt-triggered

digital I/O pin from the SPI Master device normally controls this pin. The /IRQ pin is active

LOW and is driven LOW to signify that data is present in the transmit buffer. If the TFT device

is used as the SPI Master device with multiple slaves, a diagram below is created to provide

guidance.

Fig. 4.38 Diagram to show typical connections between the TFT module (SPI Master) and

external modules (multiple SPI Slaves)

The Diagram in Fig 4.38 is meant to represent a general application when using the SPI

interface, the TFT module being the Master device; some connections may be different

depending on how the pins were assigned on the external module and its purpose. There is

no /SS0, /SS1 and /SS2 pins on the TFT module but as mentioned before, the /SS pins can be

replaced by a simple digital I/O interface from the SPI Master device. The /SS pin in

connector 3 (CN3) is used as the /SS0 pin and the digital I/O ports found in connector 7 (CN7)

and connector 4 (CN4) can be used as the /SS1 and /SS2 pins. The digital I/O ports of the TFT

module are explained properly in Chapter 4.6 of this guide. Once all the hardware side of the

interface is finished, then the software side has to be prepared.

2012 iDev Programming Guide Itron

Austin Barlis

181

Fig. 4.39 Diagram showing how data is sent and received through the SPI interface in iDev

The settings for the SPI interface can be altered using the SETUP command in iDev. The

SETUP command will be used in all the other interfaces as well. The SETUP command is

similar on how it was used in Chapter 1.5 where a system setup is created. It contains a Setup

Header and Setup Body.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (Interface)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

There is also a quick setup command format that is used for the SPI interface in iDev. This

allows the developer to change the SPI mode (master/slave), the idle state and the speed in

just one line of code. Other specific parameters can also be added after the quick setup line

provided that the quick setup line is the first line in the Setup Body.

SETUP command format for quick setup of the SPI interface:

Setup Header

SETUP(SPI)

Setup Body

{

set = "ActiveModeSpeed";

}

When using the quick setup type, there are expected values for each sub-parameter. Each

one is defined in the table below.

2012 iDev Programming Guide Itron

Austin Barlis

182

Sub-parameter
Expected
Values

Definition

Active
M (Master)  set the Itron SMART TFT module as the SPI Master device

S (Slave)  set the Itron SMART TFT module as the SPI Slave device

Mode

LR (Low Rising)
 set the idle state of the clock to low rising edge (default)

 if unsure what idle state is in this context, refer to the
glossary in Chapter 10

LF (Low Falling)  set the idle state of the clock to low falling edge

HR (High Rising)  set the idle state of the clock to high rising edge

HF (High Falling)  set the idle state of the clock to high falling edge

Speed 350 to 90000

 set the speed of data transmission value in kilobits/sec(kbs)
for SPI Master mode (default = 1000)

 this sub-parameter is ignored in SPI Slave mode

 the maximum recommended practical speed is 1 MHZ (1000)
to avoid errors in the SPI communication

Fig. 4.40 Table defining the sub-parameter values when using the quick setup command for

the SPI interface

When using any interfaces such as the SPI interface, it is important to enable the interface

first by using the SETUP command in the TU480.mnu file. Similar on how the style

parameters are defined, when a setup parameter is not defined in the main menu file, then

the default value of that particular setup parameter is assumed and used.

SPI setup parameters

Parameter Expected Values Definition

active

M (Master)
 set the Itron SMART TFT module as the SPI Master device

(default)

S (Slave)  set the Itron SMART TFT module as the SPI Slave device

N (None

 disable the SPI interface interface in the Itron SMART TFT
module device

 useful in instances when the SPI interface have to be turned on
and off at certain parts of the code

mode

LR  set the idle state of the clock to low rising edge (default)

LF  set the idle state of the clock to low falling edge

HF  set the idle state of the clock to high rising edge

HR  set the idle state of the clock to high rising edge

speed 350 to 90000

 set the speed of data transmission value in kilobits/sec (kbs) for
SPI Master mode (default = 1000)

 this parameter is ignored in SPI Slave mode

 the maximum recommended practical speed is 1 MHZ (1000) to
avoid errors in the SPI communication

proc

 termination characters can be specified to generate an interrupt to process a string
of data

 NB when sending commands (in command mode where rxi = C) to the module,
processing only occurs when \\0D or 0D hex is received e.g. TEXT(mytext, “hello
world”);; \\0D

all;  trigger on all received characters (default)

CRLF;
 trigger on a carriage return (CR) followed by line feed (LF = 0Dh

0A)

CR;
 trigger on carriage return (CR = 0dH) in command mode where

rxi = C;

LF;  trigger on line feed (LF = 0Ah)

NUL;  trigger on NUL (00h)

2012 iDev Programming Guide Itron

Austin Barlis

183

\\xx;  trigger on xxh (specify hex value)

"ABCD";  string in format defined by SYSTEM encode parameter

"\\xx\\xx";  string in format defined by SYSTEM encode parameter

procDel Y or N
 keep (Y) or remove (N) the termination character(s) before

processing (default = N)

procNum 0 to 16,780,000
 interrupt on n bytes received as alternative to proc and procDel

parameters (default = 0)

rxi

Y  enable the receive interface of the SPI interface

N  disable the receive interface of the SPI interface (default)

C
 set the receive interface of the SPI interface as a command

processing source

rxb 1 to 16,780,000
 specify the size of the receive buffer in bytes (default = 8192

bytes)

rxo
M  set the receive data order to most significant bit (default)

L  set the receive data order to least significant bit

rxf
MB

 use hardware MB (module busy) to signify that the receive
buffer is full, handshaking??

 this is an equivalent of the flow parameter in other interfaces

N  disable hardware MB (module busy)

txi

Y  enable the transmit interface of the SPI interface

N  disable the transmit interface of the SPI interface (default)

C
 set the transmit interface of the SPI interface as a command

processing source

E
 set the transmit interface of the SPI interface to echo command

processing mode

txb 1 to 16,780,000
 specify the size of transmit buffer in bytes (default = 8192

bytes)

txo
M  set the transmit data order to most significant bit (default)

B  set the transmit data order to least significant bit (default)

encode

 set the data encode mode to suit the purpose of the SPI interface

s
 set data encode to 8 bit ASCII data

 codes 00-1F and 80-FF are converted to ASCII "\\00" - "\\1D"
and "\\80" - "\\FF" respectively (default)

sr

 set data encode to 8 bit ASCII raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as ASCII+ data

sd
 set data encode to 8 bit ASCII raw data bytes

 all bytes are processed as raw data

w
 set data encode to UNICODE – HEX Char x 4 = U16 (Most

significant hex-pair first) "ABCD" -> \\ABCD

wr

 set data encode to 8 bit UNICODE raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UNICODE+ data??

wd
 set data encode to 8 bit UNICODE raw data bytes

 all bytes are processed as raw data

m
 set data encode to 8 bit UTF8 raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UTF8+ data??

mr
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

md
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

2012 iDev Programming Guide Itron

Austin Barlis

184

D8M
 set data encode to 8 bit data with U16’s, U32’s etc output most

significant byte first

 the same as data encode sd

D8L
 set data encode to 8 bit data with U16’s, U32’s etc output least

significant byte first

D16M

 set data encode to 16 bit data with bytes processed as most
significant byte first

 interrupt occurs after two bytes

 the same as data encode wd

D16L
 set data encode to 16 bit data with bytes processed as least

significant byte first

 interrupt occurs after two bytes

D32M

 set data encode to 32 bit data with bytes processed as most
significant byte first

 interrupt occurs after four bytes

 the same as data encode md

D32L
 set data encode to 32 bit data with bytes processed as least

significant byte first

 interrupt occurs after four bytes

sh or h8m or h8l  set data encode to ASCII – HEX Char x 2 = U8 e.g. "A8" -> \\A8

h16m
 set data encode to ASCII – HEX Char x 4 = U16 (most significant

hex-pair first) e.g. "ABCD" -> \\ABCD

h16l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) e.g. "ABCD" -> \\CDAB

h32m
 set data encode to ASCII – HEX Char x 4 = U32 (most significant

hex-pair first) "12345678" -> \\12345678

h32l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) "12345678" -> \\78654321

end \\(HEX code)
 set the byte sent to host (SPI Master device) when no data left

in the display’s SPI transmit buffer (default = \\FF)

dummy \\(HEX code)
 set the dummy byte set to Itron SMART TFT module which is

ignored so that data can be received by the host (SPI Master
device) (default = 0)

Fig. 4.41 Table defining the SPI interface setup parameters

The speed parameter is ignored by the TFT module in Slave mode as this is set by the SPI

Master device, so there is no need to set this parameter in Slave mode. Although the clock is

capable of 90 Mhz the recommended maximum speed for data transmission is 1 Mhz for

external SPI communication. Extensive testing of the implementation of the SPI

communication is suggested. An example SETUP command for the SPI interface is found

below.

2012 iDev Programming Guide Itron

Austin Barlis

185

Fig. 4.42 Example code showing how the SPI interface setup is done in iDev

The structure of the SETUP command is similar to the STYLE command in iDev. Specific setup

parameter’s value can be changed or updated using the LOAD command dot operator,

similar on how specific style parameters are updated. It is possible to use this method to

change the set parameter for a quick setup interface but it is not recommended, as this

would cause a lot of grief to the developer to set the sub parameter values.

LOAD command format to update/change specific setup parameters:

LOAD(Interface.Parameter, New Parameter Value);

Fig. 4.43 Example code demonstrating how the LOAD command with the dot operator is used

to update setup parameters for the SPI Interface

An example project using the SPI interface named ‘SPI Demonstration’ (link here for Slave

mode and here for Master mode). These example projects enable communication between

two TFT modules, one operating in Slave mode and the other Master mode. There are iDev

commands that are used in this SPI example project for manipulating interfaces such as

interrupts(see INT (for Interrupts) in Chapter 4.7 and handling data in Chapter 4.8).

//FILENAME: TU480a.mnu

SETUP(SPI) //

{

active = S; //

mode = 7; //

speed = 2; //

rxi = C; //

rxo = M; //

procDel = Y; //

procNum = 5; //

txi = E; //

txb = 5250; //

encode = sr;

end = \\AA;

dummy = \\25;

}

SETUP(SPI) //or a quick setup combination

{

set = "MHF4000"; //

}

SETUP(SPI) //or a mixture of both setup types

{

set = "MHF4000"; //

txb = 9800; //

proc = all; //

end = \\AA; //

}

//FILENAME: TU480a.mnu

FUNC(updspifunc) //

{

LOAD(SPI.proc,"CRLF"; //

LOAD(SPI.active,"N"; //

LOAD(SPI.encode,"mr"; //

}

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/SPI%20Slave&Ptype=zip
http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/SPI%20master&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

186

4.5. I2C/TWI (MASTER AND SLAVE) INTERFACE
The I2C (Inter-Integrated Circuit) or TWI (two-wire interface) interface is an interface that is

operated in master and slave mode. This interface only requires two connections namely SCL

(Serial Clock) and SDA (Serial Data) lines. If the Itron TFT module is used as the Master

device, multiple slave devices can be connected to it. In I2C it is also possible to have

multiple master devices controlling multiple slave devices but this is quite complicated and

only advanced developers that have used the I2C bus before can use it adequately. It is

recommended to do some background reading if the developer is required to use the I2C

interface using multiple master modes. Refer to the Glossary in Chapter 10 for a detailed

description of the master and slave mode in interface communication. The I2C interface pins

are located in connector 3 (CN3) of the TFT module as shown in the diagram below.

Fig 4.44 Diagram to show pin assignments of the I2C interface in the TFT module with the

jumper link highlighted

The jumper link highlighted in RED, allows the developer to select the voltage output level

for pin 1 (3V/5V) in connector 3(CN3). The developer must either link or solder together the

Select pad (pad 2) of the jumper to 5V pad if 5V is required to come out of pin 1(in CN3) or

the 3V pad to the Select pad (pad 2 of jumper) for 3.3V. This applies to all the module sizes

with the similar configuration in the diagram but some TFT versions do not have this jumper

link. This means that the voltage level input/output at pin 4 in connector 3(CN3) is fixed at

5V. The default logic level for the I2C interface that all TFT sizes come with is 3.3V. If

however, the model number suffix of the TFT module is K6XXXXXXXI then this means that

the I2C interface logic level of that particular TFT module is 5V. The Itron SMART TFT

modules are powered by 5V and so any 5V pin in any connectors can act as a power source

for the module and the same is applied to the GND (Common Ground) pin. However, if the

TFT module is already powered by 5V then the rest of the 5V pins in the other connectors act

as 5V outputs and the same is applied with the GND (Common Ground) pins. This means that

3/5V

/RES NU

NU GND

CN3

SCL

/IRQ

2

1 3

4

5

6 8

7 9

10

NU

SDA NU

1

2

3

Select

5V

3V

2012 iDev Programming Guide Itron

Austin Barlis

187

an external module that is connected to the TFT module can either be powered by 3.3V or 5V

from the module in pin 1.

I2C (CN3) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 3/5V
3.3 V (Output) or 5V (Input or Output)
power

Input/Output

2 SCL Serial Clock Input/Output

3 NU Not Used (Do not connect to anything) N/A

4 SDA Serial Data Input/Output

5 GND Common Ground Input/Output

6 NU Not Used (Do not connect to anything) N/A

7 /IRQ Interrupt Request (Active Low) Output from Slave

8 /RES Reset Pin (Active Low) Input to Slave

9 NU Not Used (Do not connect to anything) N/A

10 NU Not Used (Do not connect to anything) N/A

Jumper Link (Highlighted in RED) for I2C in CN3

Pad Number Pad Assignment Definition Link

1 5V 5V Select
Solder to Select (pad 2) for 5V input/output at
pin 1 in CN3

2 Select Select N/A

3 3V 3.3V Select
Solder to Select (pad 2) for 3.3V output at pin 1
in CN3

Fig. 4.45 Table describing the pin assignments of the I2C interface

As mentioned before, I2C interfaces can work as Master or Slave mode. The first scenario is

to show the typical connections needed when the Itron SMART TFT is the I2C Slave device

and the external module is the SPI Master device. The Itron SMART TFT is referred to as the

’I2C Slave (TFT)’ in the diagram below.

Fig. 4.46 Diagram to show typical connections between an external device (I2C Master) and

the TFT module (I2C Slave)

The Diagram in Fig 4.46 is meant to represent a general application when using the I2C

interface, the TFT module being the Slave device; some connections may be different

depending on how the pins were assigned on the external module and its purpose. The

developer must fit 10kohm pull-up resistors (to Logic Level) to the SDA and SCL lines in the

2012 iDev Programming Guide Itron

Austin Barlis

188

I2C bus to be able to drive the output of these lines HIGH. It is important to remember that

only one set of pull-up resistors for the whole I2C bus interface not for each device involved

and used. Some module versions however, have this pull-up resistors fitted internally. All TFT

modules have a part number with the version number indicated on the back of the module.

The usual suffix K61XXXXXX vX for most module sizes, as indicated the module version

number is the last part of the part number e.g. A 4.3” module has the part number

TU480x272-K612A1TU v12, this is a version 12 module; it has internal-pull up resistors fitted.

Module Version with internal pull-up resistors fitted for I2C bus

Module Size Module Version

3.5” v3 onwards

4.3” v8 onwards

5.7” v4 onwards

7.0” v5 onwards

Fig. 4.47 Table showing which module versions have internal pull-up resistor fitted in I2C bus

For advanced developers that have used the I2C interface before, the pin connections may

be straightforward but for beginners a brief explanation and introduction about the pin

connections would help. The SCL (Serial Clock) ensures that data transmission over the I2C

bus is synchronised and it sets the speed of serial communication between the master and

the slave module. The speed or rate of data transmission is specified by the master and the

slave has to yield to this speed. The SCD (Serial Data) is obviously where the data bytes are

sent and received. These pins are connected to each other (as in the diagram) to all the

devices using the I2C interface. The /IRQ means Interrupt Request and is useful in

communication where the master requires notification to allow data coming back to the I2C

Master. This pin is normally controlled by an Interrupt-triggered digital I/O pin from the I2C

Master device. The /IRQ pin is active LOW and is driven LOW to signify that data is present in

the transmit buffer. If the TFT device is used as the I2C Master device with multiple slaves, a

diagram below is created to provide guidance.

Fig. 4.48 Diagram to show typical connections between the TFT module (SPI Master) and

2012 iDev Programming Guide Itron

Austin Barlis

189

external modules (multiple SPI Slaves)

The Diagram in Fig 4.48 is meant to represent a general application when using the SPI

interface, the TFT module being the Master device; some connections may be different

depending on how the pins were assigned on the external module and its purpose. Once all

the hardware side of the interface is finished, then the software side has to be prepared.

Fig. 4.49 Diagram showing how data is sent and received through the AS1/AS2 interface

The I2C Master device regulates the clock line (SCL) and generates when to send START and

STOP signals. A START signal is sent by driving the SDA low whilst SCL is high and a STOP

signal is sent by driving SDA high while SCL high. After a START condition followed by an

address and the +R/W bit (Read and Write bit) is detected by the SLAVE device, the

command/data bytes are stored in a buffer size specified in the setup. The address used in

I2C bus in iDev is a 7 bit address with the range \\01 to \\7F in HEX code. The +R/W bit is

used to determine whether the Master is writing or reading from the Slave. The module will

pull SDA low during the 9
th

 clock cycle of a data transfer to acknowledge the receipt of a

byte. Additional data bits can then be send provided that the Master has received an ACK bit

(Acknowledge bit). If the Master has not detected an ACK bit then the data transfer must be

started again by providing a STOP and start condition and address +R/W bit low. This

explanation of the I2C communication requires background knowledge in programming and

interfaces, some terms used are found in the glossary in Chapter 10.

The settings for the I2C interface can be altered using the SETUP command in iDev. The

SETUP command is similar on how it was used in Chapter 1.5 where a system setup is

created. It contains a Setup Header and Setup Body.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (Interface)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

2012 iDev Programming Guide Itron

Austin Barlis

190

There is also a quick setup command format that is used for I2C in iDev. This allows the

developer to change the communication mode and address bit of the I2C interface using one

line of code. Other specific parameters can also be added after the quick setup line provided

that the quick setup line is the first line in the Setup Body.

SETUP command format for quick setup for the I2C interface:

Setup Header

SETUP(I2C)

Setup Body

{

set = "CommunicationModeAddress";

}

When using the quick setup type, there are expected values for each sub-parameter. Each

one is defined in the table below.

Sub-parameter
Expected
Values

Definition

Communication
Mode

M
set the Itron SMART TFT module as the I2C Master device (i.e. rxi =
Y; txi = n; active = M;)

S
set the Itron SMART TFT module as the I2C Slave device (i.e. rxi = Y;
txi = n; active = S;)

Y
enable the receive and transmit interface of the I2C interface (i.e.
rxi = Y; txi = N; active = S;)

N
disable the receive and transmit interface of the I2C interface (i.e.
rxi = N; txi = N; active = S;)

C
set the receive and transmit interface of the I2C interface as a
command processing source (i.e. rxi = C; txi = C; active = S;)

E

set the receive interface of the I2C interface as a command
processing source and transmit interface of the RS422/RS485
interface to echo command processing mode (i.e. rxi = C txi = E;
active = S;)

Address
"//01" to
"//7F"

set the 7 bit address of the TFT module (Slave mode) in HEX code
(no default, this parameter has to be specified all the time in the
setup)
the address specified in this parameter is ignored when in Master
mode

Fig. 4.50 Table defining the sub-parameter values when using the quick setup command for

the I2C interface

When using any interfaces such as the I2C interface, it is important to enable the interface

first by using the SETUP command in the TU480.mnu file. Similar on how the style

parameters are defined, when a setup parameter is not defined in the main menu file, then

the default value of that particular setup parameter is assumed and used.

2012 iDev Programming Guide Itron

Austin Barlis

191

I2C setup parameters

Parameter Expected Values Definition

addr "//01" to "//7F"

 set the 7 bit address of the TFT module (Slave mode) in HEX
code (no default, this parameter has to be specified all the
time in the setup)

 the address specified in this parameter is ignored when in
Master mode

active

M (Master)  set the Itron SMART TFT module as the I2C Master device

S (Slave)  set the Itron SMART TFT module as the I2C Slave device

N (None

 disable the I2C interface interface in the Itron SMART TFT
module device (default)

 useful in instances when the I2C interface have to be turned on
and off at certain parts of the code

speed 20 to 400
 set the speed of data transmission value in kilobits/sec (kbs) for

I2C Master mode (default = 100)

 this parameter is ignored in I2C Slave mode

proc

 termination characters can be specified to generate an interrupt to process a string
of data

 NB when sending commands (in command mode where rxi = C) to the module,
processing only occurs when \\0D or 0D hex is received e.g. TEXT(mytext, “hello
world”);; \\0D

all;  trigger on all received characters (default)

CRLF;
 trigger on a carriage return (CR) followed by line feed (LF = 0Dh

0A)

CR;
 trigger on carriage return (CR = 0dH) in command mode where

rxi = C;

LF;  trigger on line feed (LF = 0Ah)

NUL;  trigger on NUL (00h)

\\xx;  trigger on xxh (specify hex value)

"ABCD";  string in format defined by SYSTEM encode parameter

"\\xx\\xx";  string in format defined by SYSTEM encode parameter

procDel Y or N
 keep (Y) or remove (N) the termination character(s) before

processing (default = N)

procNum 0 to 16,780,000
 interrupt on n bytes received as alternative to proc and procDel

parameters (default = 0)

rxi

Y  enable the receive interface of the I2C interface

N  disable the receive interface of the I2C interface (default)

C
 set the receive interface of the I2C interface as a command

processing source

D
 set the receive interface of the I2C interface to receive

debugging data

rxb 1 to 16,780,000
 specify the size of the receive buffer in bytes (default = 8192

bytes)

txi

Y  enable the transmit interface of the I2C interface

N  disable the transmit interface of the I2C interface (default)

C
 set the transmit interface of the I2C interface as a command

processing source

E
 set the transmit interface of the I2C interface to echo command

processing mode

txb 1 to 16,780,000
 specify the size of transmit buffer in bytes (default = 8192

bytes)

encode  set the data encode mode to suit the purpose of the SPI interface

2012 iDev Programming Guide Itron

Austin Barlis

192

s
 set data encode to 8 bit ASCII data

 codes 00-1F and 80-FF are converted to ASCII "\\00" - "\\1D"
and "\\80" - "\\FF" respectively (default)

sr

 set data encode to 8 bit ASCII raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as ASCII+ data

sd
 set data encode to 8 bit ASCII raw data bytes

 all bytes are processed as raw data

w
 set data encode to UNICODE – HEX Char x 4 = U16 (Most

significant hex-pair first) "ABCD" -> \\ABCD

wr
 set data encode to 8 bit UNICODE raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UNICODE+ data??

wd
 set data encode to 8 bit UNICODE raw data bytes

 all bytes are processed as raw data

m
 set data encode to 8 bit UTF8 raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UTF8+ data??

mr
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

md
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

D8M
 set data encode to 8 bit data with U16’s, U32’s etc output most

significant byte first

 the same as data encode sd

D8L
 set data encode to 8 bit data with U16’s, U32’s etc output least

significant byte first

D16M

 set data encode to 16 bit data with bytes processed as most
significant byte first

 interrupt occurs after two bytes

 the same as data encode wd

D16L
 set data encode to 16 bit data with bytes processed as least

significant byte first

 interrupt occurs after two bytes

D32M

 set data encode to 32 bit data with bytes processed as most
significant byte first

 interrupt occurs after four bytes

 the same as data encode md

D32L
 set data encode to 32 bit data with bytes processed as least

significant byte first

 interrupt occurs after four bytes

sh or h8m or h8l  set data encode to ASCII – HEX Char x 2 = U8 e.g. "A8" -> \\A8

h16m
 set data encode to ASCII – HEX Char x 4 = U16 (most significant

hex-pair first) e.g. "ABCD" -> \\ABCD

h16l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) e.g. "ABCD" -> \\CDAB

h32m
 set data encode to ASCII – HEX Char x 4 = U32 (most significant

hex-pair first) "12345678" -> \\12345678

h32l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) "12345678" -> \\78654321

end \\(HEX code)
 set the byte sent to host (SPI Master device) when no data left

in the display’s SPI transmit buffer (default = \\FF)

Fig. 4.51 Table defining the I2C interface setup parameters

2012 iDev Programming Guide Itron

Austin Barlis

193

The address specified in the SETUP is only processed and used when the TFT module is in

Slave mode. On the other hand, the address of the Slave device that the TFT module

(Master) is trying to communicate to is specified in using the LOAD command format. An

example code that uses the SETUP command for the I2C interface is created.

Fig. 4.52 Example code showing how the I2C interface setup is done in iDev

The structure of the SETUP command is similar to the STYLE command in iDev. Specific setup

parameter’s value can be changed or updated using the LOAD command dot operator,

similar on how specific style parameters are updated. It is possible to use this method to

change the set parameter for a quick setup interface but it is not recommended, as this

would cause a lot of grief to the developer to set the sub parameter values.

LOAD command format to update/change specific setup parameters:

LOAD(Interface.Parameter, New Parameter Value);

Fig. 4.53 Example code demonstrating how the LOAD command with the dot operator is used

to update setup parameters for the I2C Interface

//FILENAME: TU480a.mnu

SETUP(I2C) //

{

addr = \\3E; //

active = S; //

proc = all; //

procDel = Y; //

procNum = 5; //

rxi = C; //

rxb = 5250; //

txi = E; //

txb = 5250; //

encode = sr; //

end = \\FE; //

}

SETUP(I2C) //or a quick setup combination

{

set = "C3E"; //

}

SETUP(I2C) //or a mixture of both setup types

{

set = "C3E"; //

procDel = Y; //

proc = all; //

encode = mr; //

end = \\0D; //

}

//FILENAME: TU480a.mnu

FUNC(updi2cfunc) //

{

LOAD(I2C.proc,"CRLF"; //

LOAD(I2C.end,"\\1A"; //

LOAD(I2C.encode,"r"; //

}

2012 iDev Programming Guide Itron

Austin Barlis

194

There is an example project that can be downloaded from the website named ‘I
2
C Sensor

Demonstration Project’ (link here). This project uses three external devices connected

through the I2C interface to the TFT module. The three external devices (accelerometer, light

sensor and temperature sensor) are the I2C Slave devices and the TFT module is the I2C

Master device. The setup of the three I2C Slave devices connected to the I2C Master device

is exactly the same as the diagram in Fig 4.48 in this guide. This example also demonstrates

how the ADC ports are used. There are new iDev commands in these example projects that

are used in manipulating interfaces such as interrupts. The INT (for Interrupts) command is

introduced and explained in Chapter 4.7 of this guide and processing data is explained in

Chapter 4.8.

4.6. DIGITAL INPUT/OUTPUT (I/O) INTERFACE & EXTERNAL KEYBOARD
There are 31 Digital Input and Output (I/O) lines in an Itron TFT module for all sizes. The

digital I/O lines K00 to K23 operate at a fixed 3.3V logic level, if the developer requires a

different logic level, then an external level shifter IC (definition in Chapter 10) have to be

used. The I/O lines K24 to K30 have a variation of logic levels (3.3V or 5V) depending on the

module version (see Fig 4.60). The Digital Inputs include an optional pull-up resistor ~50K-

120K in value and the Outputs can source ~1mA and sink ~3mA. The I/O ports are initially

pulled HIGH at RESET or POWER ON. An external keyboard or matrix can be connected to

the digital I/O pins and perform operations based on which key/button is pressed. These 31

I/O lines can be configured to scan a matrix of buttons with up to 240 keys i.e. a keypad or

keyboard with up to 240 keys/buttons can be connected to the TFT module and each

key/button pressed can be assigned to perform an action specified in the code. Dual key

presses are supported to enable ‘Shift’ functionality. There are no diodes required to be

connected in the key matrix configured for dual key operation. Due to the amount of pins

needed for the 31 Digital I/O lines, the locations of these pins are spread out in different

connectors. The Digital I/O lines K00 to K15 are found in Connector 7 (CN7), K16 to K23 are

found in Connector 4 (CN4) and K24 to K30 are found in Connector 3 (CN3).

Fig 4.54 Diagram to show pin assignments of the Digital I/O interface (K00-K15) in CN7 of the

TFT module

1

2

3

4

5

6

7

8 10

9 11

12

13

14

15

16

17

18

19

20

CN7

K00

GND GND

5V 3V K02 K04

K01 K03 K05 K07 K09 K11 K13

K06 K08 K10 K12 K14

K15

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/I2CSensorC&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

195

Digital I/O (CN7) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 5V 5V power Input/Output

2 GND Common Ground Input/Output

3 3V 3.3 V power Output

4 GND Common Ground Input/Output

5 K00 Digital I/O pin K00 Input/Output

6 K01 Digital I/O pin K01 Input/Output

7 K02 Digital I/O pin K02 Input/Output

8 K03 Digital I/O pin K03 Input/Output

9 K04 Digital I/O pin K04 Input/Output

10 K05 Digital I/O pin K05 Input/Output

11 K06 Digital I/O pin K06 Input/Output

12 K07 Digital I/O pin K07 Input/Output

13 K08 Digital I/O pin K08 Input/Output

14 K09 Digital I/O pin K09 Input/Output

15 K10 Digital I/O pin K10 Input/Output

16 K11 Digital I/O pin K11 Input/Output

17 K12 Digital I/O pin K12 Input/Output

18 K13 Digital I/O pin K13 Input/Output

19 K14 Digital I/O pin K14 Input/Output

20 K15 Digital I/O pin K15 Input/Output

Fig 4.55 Table describing the pin assignments of the Digital I/O interface (K00-K15) in CN7

Fig 4.56 Diagram to show pin assignments of the Digital I/O interface (K16-K23) in CN4 of the

TFT module with the jumper link highlighted

3/5V

GND

CN4

Select

5V

3V

K17

K16

1

K18

K19

K20

K21

K22

K23

2 1 4

3 5

6 8

7 9

10

2

3

2012 iDev Programming Guide Itron

Austin Barlis

196

Digital I/O (CN4) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 K16 Digital I/O pin K16 Input/Output

2 K17 Digital I/O pin K17 Input/Output

3 GND Common Ground Input/Output

4 3/5V 3.3V (Output) or 5V (Input/Output) power IntputOutput

5 K18 Digital I/O pin K18 Input/Output

6 K19 Digital I/O pin K19 Input/Output

7 K20 Digital I/O pin K20 Input/Output

8 K21 Digital I/O pin K21 Input/Output

9 K22 Digital I/O pin K22 Input/Output

10 K23 Digital I/O pin K23 Input/Output

Jumper Link (Highlighted in RED) for Digital I/O in CN4

Pad Number Pad Assignment Definition Link

1 5V 5V Select
Solder to Select (pad 2) for 5V input/output at
pin 4 in CN4

2 Select Select N/A

3 3V 3.3V Select
Solder to Select (pad 2) for 3.3V output at pin 4
in CN4

Fig 4.57 Table describing the pin assignments of the Digital I/O interface (K16-K23) in CN4

Fig 4.58 Diagram to show pin assignments of the Digital I/O interface (K24-K30) in CN3 of the

TFT module with the jumper link highlighted

3/5V

/RES

GND

CN3

2

1 3

4

5

6 8

7 9

10 1

2

3

Select

5V

3V

K28

K27

K29

K30 K26 K24

K25

2012 iDev Programming Guide Itron

Austin Barlis

197

Digital I/O (CN3) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 3/5V 3.3V (Output) or 5V (Input/Output) power Input/Output

2 K24 Digital I/O pin K24 Input/Output

3 K25 Digital I/O pin K25 Input/Output

4 K26 Digital I/O pin K26 Input/Output

5 GND Common Ground Input/Output

6 K27 Digital I/O pin K27 Input/Output

7 K28 Digital I/O pin K28 Input/Output

8 /RES Reset Pin (Active Low) Input

9 K29 Digital I/O pin K29 Input/Output

10 K30 Digital I/O pin K30 Input/Output

Jumper Link (Highlighted in RED) for Digital I/O in CN3

Pad Number Pad Assignment Definition Link

1 5V 5V Select
Solder to Select (pad 2) for 5V input/output at
pin 1 in CN3

2 Select Select N/A

3 3V 3.3V Select
Solder to Select (pad 2) for 3.3V output at pin 1
in CN3

Fig. 4.59 Table describing the pin assignments of the Digital I/O interface (K24-K30) in CN3

The jumper link highlighted in RED in Fig 4.57 and Fig 4.58, allows the developer to select the

voltage output level for pin 4 (3V/5V) in connector 4(CN4) and pin 1 in connector 3(CN3).

Both jumper links in CN4 and CN3 work the same way, the developer must either link or

solder together the Select pad (pad 2) of the jumper to 5V pad if 5V is required to come out

of pin 4 in CN4 and pin 1 in CN3 or the 3V pad to the Select pad (pad 2 of the jumper) for

3.3V output. This applies to all the module sizes with the similar configuration in the diagram

but some TFT versions and sizes do not have this jumper link. This means that the voltage

level input/output at pin 4 in CN4 and pin 1 in CN3 is fixed at 5V. The default logic level for

the Digital I/O interface that all TFT sizes come with is 3.3V. The Itron SMART TFT modules

are powered by 5V and so any 5V pin in any connectors can act as a power source for the

module and the same is applied to the GND (Common Ground) pin. However, if the TFT

module is already powered by 5V then the rest of the 5V pins in the other connectors act as

5V outputs and the same is applied with the GND (Common Ground) pins; an external

module that is connected to the TFT module can either be powered by 3.3V or 5V from the

module at pin 4 in CN4 or at pin 1 in CN3. The AS1, SPI and I2C interfaces are also located in

CN3 of the module, and the logic levels of these interfaces can either be 3.3V or 5V with a

level shifter fitted. TFT modules with the level shifter ICs fitted have certain pins in CN3

operating at 5V instead of the typical 3.3V. The table below shows which I/O pins operate at

3.3V and 5V with the module number suffix specified.

Module
Number suffix

I/O pins with 3.3V Output I/O pin with 5V Input/Output

K6XXXXXXXA 4(K26), 6(K27) 2(K24), 3(K25), 7(K28), 9(K29), 10(K30)

K6XXXXXXXS None
3(K25), 4(K26), 6(K28), 7(K28), 9(K29),
10(K30)

K6XXXXXXXI
3(K25) ,6(K28), 9(K29),
10(K30)

2(K24), 4(K26), 7(K28)

Fig. 4.60 Table describing which I/O pins operate at 3.3V and 5V

2012 iDev Programming Guide Itron

Austin Barlis

198

The basic use of Digital I/O in electronics is a switch/button. These pins can be used to

manipulate outputs to turn ON an external LED based on the state of the switch (push

button).

Fig. 4.61 Diagram to show typical connections between the TFT module and I/O controlled

peripherals such as an LED and a push button used as a switch

There are 31 Digital I/O pins available on the TFT module; in the example above only 3 were

used. The diagram is only meant to represent a basic use and application of the I/O ports, it

can get complicated if more I/O lines are used. The operation shown above is set such that

the I/O K00 is set as an input for the external switch and the I/O K01 and K02 are set as

outputs for the two LEDs. When the push button is pressed, the I/O detects a logic LOW.

Then it is specified in iDev that when K00 is LOW, set K01 and K02 outputs HIGH which

consequently turns ON LED1 and LED2. A different configuration can also be applied so that

the opposite happens when K00 is LOW. The Digital I/O control is explained thoroughly in

Chapter 4.9. The I/O lines can also be connected to an external keyboard or matrix of keys.

2012 iDev Programming Guide Itron

Austin Barlis

199

Fig. 4.62 Diagram to show typical connections between the TFT module and a 4x4 matrix

keypad

In general, a 4x4(16 key) matrix keypad has pin assignments separated by rows and columns.

In Fig 4.62, the pins 1 to 4 control the rows and pins 5 to 8 controls the columns. The pin

assignments of different keypads are not always like this, so it is recommended to check the

datasheet of the keypad being used first before making connections. The I/O K00 to K03 is

assigned to control rows and I/O K04 to K07 for the columns. When a button is pressed, a

signal input change to the designated I/O pair is detected, of which a function can be called.

A more thorough explanation on how to manipulate and control the external keyboard is

found in Chapter 4.9.

The settings for the Digital I/O interface can be altered using the SETUP command in iDev.

The SETUP command is similar on how it was used in Chapter 1.5 where a system setup is

created. It contains a Setup Header and Setup Body. The Interface parameter in the Setup

Header has to be changed to KEYIO for the Digital I/O interface.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (Interface)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

1 2 3 4 5 6 7 8

2012 iDev Programming Guide Itron

Austin Barlis

200

Digital I/O setup parameters

Parameter Expected Values Definition

active \\00000000-\\7FFFFFFF

 specify which digital I/O lines are
active

 HIGH is active, LOW is inactive

 value used is an 8-digit HEX code

 (default = \\00000000)

inp \\00000000-\\7FFFFFFF

 specify which digital I/O lines are
set as Input or Output

 HIGH is input, LOW is ouput

 value used is an 8-digit HEX code

 (default = \\00000000)

trig \\00000000-\\7FFFFFFF

 specify how the interrupts are
triggered in digital I/O lines

 HIGH is to trigger interrupt, LOW is
to not trigger interrupt

 value used is an 8-digit HEX code

 (default = \\00000000)

edge \\00000000-\\7FFFFFFF

 specify the idle state of the digital
I/O lines

 HIGH is rising edge, LOW is falling
edge

 value used is an 8-digit HEX code

 (default = \\00000000)

keyb \\00000000-\\7FFFFFFF

 specify which digital I/O lines are
used for external keyboard
keys/buttons

 HIGH is active I/O for keyboard,
LOW is inactive I/O

 value used is an 8-digit HEX code

 (default = \\00000000)

pullup \\00000000-\\7FFFFFFF

 specify which digital I/O lines
should have input pull up resistors
(~50k – 120k) activated

 HIGH is active, LOW is inactive

 value used is an 8-digit HEX code

 (default = \\7FFFFFFFF)

Fig. 4.63 Table defining the Digital I/O interface setup parameters

2012 iDev Programming Guide Itron

Austin Barlis

201

As stated before, there are 31 I/O lines that can be manipulated in the TFT module. It is

evident from the table that the expected values for the setup parameters use 8-digit HEX

code but it is not obvious what it resembles. The 8-digit HEX code is divided into four

‘chunks’ of 2-digit HEX value. Each ‘chunk’ can control 8 I/O lines, but as there’s only 31 I/O

lines used, the 4th ‘chunk’ only controls 7 I/O lines. The first ‘chunk’ controls Digital I/O K00

to K07, second controls Digital I/O K08 to K15, third controls Digital I/O K16 to K23 and lastly

the fourth controls Digital I/O 24 to K30.

Fig. 4.64 Diagram to show how ‘chunks’ of 2-bit HEX value and bit number are allocated to

the Digital I/O lines

There are 256 possible values in a 2-digit HEX code and an 8-bit Binary value. The Binary

value is used to specify which I/O should be enabled and is converted to a HEX value for the

setup parameter. For an introduction and explanation about the binary numbering system,

refer to Chapter 3.4. Take the first ‘chunk’ as an example; it controls the first 8 I/O lines (K00

to K07) and in Binary each ‘bit’ can either be a 1 or a 0. So if the I/O lines K00 and K03 to K05

are needed to be enabled, the Binary value for the first ‘chunk’ that is used would have to be

00111001 and in HEX the value is 39 (refer to HEX in Chapter 10 for the conversion table). In

order to enable the I/O lines specified, the parameter value used for the active parameter is

\\00000039.

Digital I/O K07 K06 K05 K04 K03 K02 K01 K00

Bit no. 8
th

 7
th

 6
th

 5
th

 4
th

 3
rd

 2
nd

 1
st

Digital I/O K15 K14 K13 K12 K11 K10 K09 K08

Bit no. 8
th

 7
th

 6
th

 5
th

 4
th

 3
rd

 2
nd

 1
st

Digital I/O K23 K22 K21 K20 K19 K18 K17 K16

Bit no. 8
th

 7
th

 6
th

 5
th

 4
th

 3
rd

 2
nd

 1
st

Digital I/O
N/A

K30 K29 K28 K27 K26 K25 K24

Bit no. 7
th

 6
th

 5
th

 4
th

 3
rd

 2
nd

 1
st

\\HH HH HH HH
1

st
 Chunk 2

nd
 Chunk 3

rd
 Chunk 4

th
 Chunk

2012 iDev Programming Guide Itron

Austin Barlis

202

Fig. 4.65 Diagram with an example 8-digit HEX value, indicating which I/O lines would have a

HIGH(1) or LOW(0) value

Fig. 4.66 Example code showing how the Digital I/O interface setup is done in iDev

The structure of the SETUP command is similar to the STYLE command in iDev. Specific setup

parameter’s value can be changed or updated using the LOAD command dot operator,

similar on how specific style parameters are updated.

LOAD command format to update/change specific setup parameters:

LOAD(Interface.Parameter, New Parameter Value);

Fig. 4.67 Example code demonstrating how the LOAD command with the dot operator is used

to update setup parameters for the I/O Interface

//FILENAME: TU480a.mnu

SETUP(KEYIO)

{

active = \\6CAF1A2D; //

inp = \\7FFF1A2D; //

trig = \\6CAF1A2D; //

keyb = \\00000000; //

}

//FILENAME: TU480a.mnu

FUNC(updiofunc) //

{

LOAD(KEYIO.inp,"\\0000FFFF"; //

LOAD(KEYIO.trig,"\\6CAFFFFF"; //

}

\\6C AF 1A 2D

K07 K06 K05 K04 K03 K02 K01 K00

 0 0 1 0 1 1 0 1

K15 K14 K13 K12 K11 K10 K09 K08

 0 0 0 1 1 0 1 0

K23 K22 K21 K20 K19 K18 K17 K16

 1 0 1 0 1 1 1 1

N/A K30 K29 K28 K27 K26 K25 K24

N/A 1 1 0 1 1 0 0

1
st

 Chunk 2
nd

 Chunk 3
rd

 Chunk 4
th

 Chunk

2012 iDev Programming Guide Itron

Austin Barlis

203

4.7. INTERRUPTS
In programming, an interrupt is used to notify or alert the processor (CPU) that an event

occurred needs attention and processing. Interrupts are a vital part when using interfaces as

it allows the CPU to receive and process data coming in and out of that particular interface.

In iDev, the INT command is used to specify which interface or I/O buffer is used and the

function to be called every time the interrupt event occurs. An interrupt will occur when the

interface setup parameters proc and procNum allow activity within the buffer and the

appropriate type of interrupt is set. Serial interfaces can trigger an interrupt on a byte

received/transmitted. The I/O interface can trigger an interrupt when an input change is

detected. Interrupts in iDev can be stated inside or outside the Page Body or even in both as

long as they have different interrupt names. If the interrupt is defined outside of the Page

Body this means that this interrupt is a Global Interrupt. A Global Interrupt is an interrupt

that is active continuously throughout the whole iDev project, so this interrupt can be

accessed anywhere in the code. On the contrary, an interrupt that is defined inside the Page

Body is a Local Interrupt. This type of interrupt can only be processed when the page that it is

defined in is active or displayed. Multiple interrupts can also be created provided that each

of them has a unique interrupt name but does not necessarily need to have different

interface buffers i.e. different pages can have interrupts from the same interface buffer,

provided that each interrupt defined have unique names. An interface buffer is a built-in

buffer that processes and handles data in the specified interface every time an interrupt

occurs; the data processed by this buffer is handled by the function specified in the INT

command. The placement of an interrupt in the code is important; it should always be stated

after the SETUP command for the interface that is being used. It is also recommended to

state an interrupt after the function associated with it is defined to minimise the possibility

of causing errors. As stated in Chapter 2.5.1 and Chapter 2.5.2, the SHOW and HIDE

command can be used to enable and disable an interrupt anywhere in the program.

INT command format to set up Interface interrupts in iDev:

INT(Interrupt Name, Interface Buffer, Function);

Interface Buffer Parameter Expected Values and Definition

Interface Buffer Definition

RS2RXC
interrupt on each character received for
the RS232 interface buffer

RS4RXC
interrupt on each character received for
the RS422/RS485 interface buffer

AS1RXC
interrupt on each character received for
the AS1 interface buffer

AS2RXC
interrupt on each character received for
the AS2 interface buffer

DBGRXC
interrupt on each character received for
the DBG interface buffer

I2CRXC
interrupt on each character received for
the I2C interface buffer

KXX (where XX is the I/O assignment)
interrupt when an input change in the
specified KXX I/O pin is detected

Fig. 4.68 Table describing the expected values for the Interface Buffer parameter in the INT

command in iDev

2012 iDev Programming Guide Itron

Austin Barlis

204

An example code is created to show how to use and setup an interrupt for the RS232

interface. As this would require an external module/peripheral that uses the RS232 interface

connected to the TFT module, only an example code can be shown without screen shots of

the TFT module display.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (Interface)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

SETUP command format for quick setup of the RS232 interface:

Setup Header

SETUP(RS2)

Setup Body

{

set = "BaudParityCommunicationMode";

}

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

VAR command format for text variable:

VAR(Variable name, "Starting text value", Variable Style);

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

}

2012 iDev Programming Guide Itron

Austin Barlis

205

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

INT command format to set up interrupts in iDev:

INT(Interrupt Name, Interface Buffer, Function);

SHOW command format:

SHOW(Page name or page component name);

Fig. 4.69 Example code demonstrating how the INT command in iDev is used in a basic level

This example code in Fig 4.69 would display the data that is received and interpret it as 8 bit

ASCII raw data bytes, this interpretation can be changed in the encode parameter in the

Setup Body of the interface. The data is stored in a buffer variable and then placed in a text

component called mybufftxt. The interrupt is triggered every time a byte or a character is

received in the RS232 interface. The frequency and how the interrupt is triggered are

//FILENAME: TU480a.mnu

SETUP(RS2) //

{

set = "768NC"; //

data = 5; //

proc = all; //

encode = sd; //

}

STYLE(homepgst,Page) //

{

back = white; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = black; //

maxRows = 1; //

maxLen = 32; //

}

VAR(bufvar,"",TXT); //

PAGE(homepage,homepgst) //

{

POSN(240,135); //

TEXT(mybufftxt,"data received here",Ascii16txst); //

}

FUNC(RS2Eventfunc) //

{

LOAD(bufvar,RS2); //

TEXT(mybufftxt,bufvar);; //

}

INT(rs2int,RS2RXC,RS2Eventfunc); //

SHOW(homepage); //

2012 iDev Programming Guide Itron

Austin Barlis

206

specified in the proc and procNum parameter in the Setup Body of the interface. The function

RS2Eventfunc is called every time the interrupt is triggered. The buffer’s contents are then

read using the LOAD command. This clears the interrupt which avoids the function to keep

getting called. This buffer must be read every time the interrupt is triggered otherwise the

function RS2Eventfunc will keep getting called. The LOAD command for the interfaces is

explained thoroughly in Chapter 4.8. The INT command is also used for COUNTERS and

TIMERS in iDev (see Chapter 3.7 and Chapter 3.8).

Counter Interrupts in iDev

INT command format to use as wrap-around interrupt for the runtime counter:

INT(Interrupt name, Runtime counter, Function to be called);

Runtime Counter with INT Definition

INT(myint, CNTMILLI, mymilfunc); call the function mymilfunc every 1000 milliseconds

INT(myint, CNTSECS, mysecfunc); call the function mysecfunc every 60 seconds

INT(myint, CNTMINS, myminfunc); call the function myminfunc every 60 minutes

INT(myint, CNTHOURS, myhrsfunc); call the function myhrsfunc every 24 hours

INT(myint, CNTDAYS, mydayfunc); call the function mydayfunc every 4,294,967,295 days

Fig. 4.70 Table demonstrating how wrap-around interrupts with runtime counters are used

Timer Interrupts in iDev

INT command format to setup timer interrupts, where x is the number of timer interrupt

being used (TIMER0-TIMER9):

INT(Timer Interrupt name, TIMERx, Function to be called);

LOAD command format to change value of a variable:

LOAD(Destination Variable, New Value);

Timer Manipulation Usage Definition

LOAD(myvar, TIMERx); read the remaining time value before TIMERx expires

LOAD(TIMERx, duration); run TIMERx once based on the duration value specified

LOAD(TIMERx, duration, repeat);
run TIMERx multiple times based on repeat value and the
duration value

LOAD(TIMERx, 0); clear and reset TIMERx

Fig. 4.71 Table showing how timer interrupts in iDev can be manipulated

Example Usage Definition

LOAD(TIMER2,1000); TIMER2 runs once and expires after 1000 ms (1 second)

LOAD(TIMER4,500,5); TIMER4’s duration is repeated 5 times with each duration at 500 ms

LOAD(TIMER6,1000,0); TIMER9 runs forever, expiring every 1000 ms (1 second)

LOAD(TIMER3,0); clear and reset TIMER3

LOAD(TIMER7,time);
TIMER7 runs once and expires after the duration value specified in
the variable time

LOAD(myvar,TIMER4);
read the remaining time left in TIMER4 and store it as an integer in
variable myvar

Fig. 4.72 Example table demonstrating how manipulation on timer interrupts is applied

2012 iDev Programming Guide Itron

Austin Barlis

207

4.8. HANDLING DATA IN INTERFACES – LOAD
In iDev, sending and receiving data through a specified interface can be achieved using the

LOAD command. The data stored in a variable or an array can be sent through an interface

and data received is stored a variable or an array, ready for processing. The data stored in

the variable from an interface can be in different formats. It is important that the

appropriate encode parameter in the interface setup is selected. The buffer specified is read

and cleared using the LOAD command; this avoids the function related to an interrupt to

keep on getting called. The LOAD command format below applies to the RS232,

RS422/RS485, AS1/AS2 and SPI interfaces.

LOAD command format to send data through a specified interface:

LOAD(Interface, Var/Array/"Data");

LOAD command format to send multiple data through a specified interface:

LOAD(Interface, Var1/Array1/"Data1", Var2/Array2/"Data2");

LOAD command format to receive data through a specified interface:

LOAD(Variable/Array, Interface);

All the data in the list are ‘concatenated’ when sending multiple data using the LOAD

command. The LOAD command to send data for the I2C interface requires an extra

parameter to specify the address and the size of bytes to read after the data has been sent.

The LOAD command is the same as the others when receiving data through I2C.

LOAD command format to send data through I2C:

LOAD(I2C, Device Address, Read Bytes, Var/Array/"Data");

LOAD command format to send multiple data through I2C:

LOAD(I2C, Device Address, Read Bytes, Var1/Array1/"Data1", Var2/Array2/"Data2");

LOAD command format to receive data through I2C:

LOAD(Variable/Array, I2C);

Fig. 4.73 Example code demonstrating how the LOAD command to handle data in an

interface is implemented

//FILENAME: TU480a.mnu

FUNC(sendAS1func) //

{

LOAD(AS1,"temp","setting has",myvar); //

}

FUNC(AS1Eventfunc) //

{

LOAD(mybuf,AS1); //

TEXT(mybufftxt,mybuf);; //

}

FUNC(I2CEventfunc) //

{

LOAD(I2C,\\28,1,"test"); //

WAIT(20); //

LOAD(bufvar,I2C); //

TEXT(mybufftxt,bufvar);; //

}

2012 iDev Programming Guide Itron

Austin Barlis

208

4.9. CONTROLLING I/O INTERFACE AND EXTERNAL KEYBOARD

(INCOMPLETE)
The Digital I/O interface lines can only have a Logic HIGH or Logic LOW state. The LOAD

command is used to control the Digital I/O lines and the KEY command is used to control an

external keyboard.

LOAD command to control Digital Output, where XX is the I/O assignment, 0 (Logic LOW) and

1 (Logic HIGH):

LOAD(KXX, 0/1);

LOAD command to store the Digital I/O state, where XX is the I/O assignment, value stored is

either 0 (Logic LOW) and 1 (Logic HIGH):

LOAD(Variable/Arrray, KXX);

In iDev, 8 I/O lines are combined to form different combinations that can be manipulated

using one LOAD command instead of one for each I/O line. Each combination is assigned to a

built-in I/O variable.

8-Bit I/O variable
I/O and Bit Assignment

8
th

 7
th

 6
th

 5
th

 4
th

 3
rd

 2
nd

 1
st

KA K07 K06 K05 K04 K03 K02 K01 K00

KB K15 K14 K13 K12 K11 K10 K09 K08

KC K14 K12 K10 K08 K06 K04 K02 K00

KD K15 K13 K11 K09 K07 K05 K03 K01

KE K23 K22 K21 K20 K19 K18 K17 K16

Fig. 4.74 Table describing combinations of I/O lines to which 8-Bit variable

LOAD command to control Digital Output, where V is the 8-bit I/O variable :

LOAD(KV, \\HEX code);

LOAD command to store the Digital I/O state, where V is the 8-bit I/O variable, value stored

is in HEX code:

LOAD(Variable/Arrray, KV);

The value in the \\HEX code parameter is deduced from an 8-bit binary value. The method on

which I/O lines are assigned is exactly the same as the ‘chunk’ explanation in Chapter 4.6.

Take KC as an example; to set the I/O lines K14, K08, K00 to logic HIGH then the value used

must be \\91. The value \\91 when converted to binary is 10010001. When 10010001 is

compared to the table above, it is evident that the 8
th

(K14), 5
th

(K08) and 1
st

(K00) bit has the

value 1 and the rest 0. An explanation on the binary numbering system is found in Chapter

3.4.

2012 iDev Programming Guide Itron

Austin Barlis

209

Fig. 4.75 Example code showing how the LOAD command is used to manipulate I/O interface

The external keyboard uses a combination of I/O lines that are specified in the SETUP

command (see Chapter 4.6). The type parameter in the key style has to be changed to keyio

to enable the external keyboard in iDev, so the built-in key styles cannot be used. The

parameter KXX and KYY specified which I/O line is associated with that particular key

component. In iDev, a maximum of 240 keys is supported.

KEY command format for external key:

KEY(Key component name, Function name, KXX, KYY, Key style);

KEY command format using inline commands for external key:

KEY(Key component name, [Inline command1,Inline command2..], KXX, KYY, Key style);

An example using a 2x2 matrix keypad and an LED connected to the TFT module is created.

The LED is connected to K04 and the matrix keypad is connected to K00 to K03. The

connection setup used is shown below.

Fig. 4.76 Diagram showing how the 2x2 matrix keypad and the LED are connected to the TFT

module

//FILENAME: TU480a.mnu

FUNC(iofunc)

{

LOAD(K05,1); //set K05 to logic HIGH

LOAD(K21,0); //set K21 to logic LOW

LOAD(KC,\\91); //set K14,K08,K00 to logic HIGH & K12,K10,K06,K04,K02 to logic LOW

LOAD(iovar,K05); //load the I/O K05 state to iovar variable

LOAD(iovar,KC); //load the 8 bit I/O states to iovar variable

}

2012 iDev Programming Guide Itron

Austin Barlis

210

SETUP command format for any interface used in iDev:

Setup Header

SETUP (Interface)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

TEXT command format:

TEXT(Text component name, "Text component", Text Style)

KEY command format using inline commands for external key:

KEY(Key component name, [Inline command1,Inline command2..], KXX, KYY, Key style);

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

}

SHOW command format:

SHOW(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

211

Fig. 4.77 Example code using the KEY and LOAD command to manipulate I/O lines and

external keyboard

When an external keyboard is used, it is important to enable the Digital I/O used in the active

parameter of the SETUP command. The I/O K04 is used as an output in Fig 4.77 hence the

value of the active and keyb parameter. Notice that there is no POSN command for the KEY

command as the key is an external key not a ‘touch’ key in the screen. Note that there is no

built-in debounce in iDev when an I/O line is used as an input that is triggered by an interrupt

e.g. K05 is set as an input line with the interrupt set every time falling edge is detected. The

developer would have to use this example function in iDevt to implement a debounce (see

Chapter 10 for definition).

//FILENAME: TU480a.mnu

SETUP(KEYIO) //

{

active = \\0000001F; //

keyb = \\0000000F; //

}

STYLE(extkeyst) //

{

type = keyio; //

debounce = 100; //

delay = 500; //

repeat = 500; //

action = D; //

}

STYLE(homepgst,Page) //

{

back = white; //

}

STYLE(Ascii16txst,Text) //

{

font = Ascii16; //

col = black; //

maxRows = 1; //

maxLen = 20; //

}

PAGE(homepage,homepgst) //

{

POSN(240,135); //

TEXT(extkeytxt,"button is pressed",Ascii16txst); //

KEY(extkey1,[LOAD(K04,0);],K00,K02,extkeyst); //LED turned on when key ‘1’ is pressed

KEY(extkey2,[LOAD(K04,0);],K00,K03,extkeyst); //LED turned on when key ‘3’ is pressed

KEY(extkey3,[TEXT(extkeytxt,"2
nd
 key pressed");;],K01,K02,extkeyst);

//

KEY(extkey4,[TEXT(extkeytxt,"4
th
 key pressed");;],K01,K03,extkeyst);

//

}

SHOW(homepage); //

2012 iDev Programming Guide Itron

Austin Barlis

212

Fig. 4.78 Example code showing how button debounce is implemented in iDev (incomplete)

//FILENAME: TU480a.mnu

SETUP(KEYIO) //

{

active = \\00000020; //

inp = \\00000020; //

trig = \\00000020; //

edge = \\00000000; //

}

VAR(curiostate,0,U8);

VAR(prviostate,0,U8);

VAR(iostate,0,U8);

VAR(lasttime,0,FLT4);

VAR(debouncedel,100,U8);

STYLE(homepgst,Page)

{

back = white;

}

LOOP(debouncelp,FOREVER)

{

LOAD(iostate,K05);

IF(iostate != prviostate?LOAD(lasttime,CNTK05);

CALC(cntcalc,CNTK05,lasttime, "-");

IF(cntcalc > debouncedel?[LOAD(curiostate,iostate);LOAD(curiostate,K05);

LOAD(prviostate,iostate);

}

2012 iDev Programming Guide Itron

Austin Barlis

213

5. CONTROLLING PWM, ADC AND PIEZO BUZZER
The itron SMART TFT module has built-in 3 PWM controllers, 2 ADC ICs and a Buzzer controller. All these

built-in peripherals are configured using the SETUP command.

5.1. PWM
PWM (Pulse Width Modulation) is a method used to vary and control analogue devices based

on the digital outputs e.g. controlling the brightness of an LED. The 3 PWM controllers are

located in CN4 (PW1 and PW2) and CN7 (PW3). The PWM controllers on the TFT module are

outputs only; it cannot be used to detect PWM levels from external devices. The voltage

level of the PWM output is fixed at 3.3V for all module sizes and versions. The other (not

PWM) Digital I/O lines in CN4 and CN7 are still usable even though the same connectors are

used.

Fig. 5.1 Diagram to show pin assignments of the AS2 interface in the TFT module with the

jumper link highlighted

The jumper link highlighted in red is used to set the voltage output levels on pin 4 in

connector 4 (CN4) to either 5V or 3.3V. This applies to all the module sizes with the similar

configuration in the diagram but some TFT versions do not have this jumper link have the

voltage level input/output at pin 4 in connector 4(CN4) fixed at 5V.

PWM3(CN7) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 5V 5V power Input/Output

2 GND Common Ground Input/Output

3 3V 3.3V (Output) power Output

4 GND Common Ground Input/Output

14 PW3 PWM 3 Controller Output

PWM1 and PWM2 (CN4) Pin Assignment Definition

3 GND Common Ground Input/Output

4
3/5V

3.3V (Output) or 5V
(Input or Output) power

Input/Output

5 PW1 PWM1 Controller Output

GND GND

GND

3/5V

5V

PW2

CN4

CN7

1

2 4

3

4

3

6

5

1
2
3

Select

3V

5V

PW3

3V

PW1

14

2012 iDev Programming Guide Itron

Austin Barlis

214

6 PW2 PWM2 Controller Output

Jumper Link (Highlighted in RED) for PWM1 and PW2 CN4

Pad Number Pad Assignment Definition Link

1 5V 5V Select
Solder to Select (pad 2) for 5V
input/output at pin 4 in CN4

2 Select Select N/A

3 3V 3.3V Select
Solder to Select (pad 2) for 3V
output at pin 4 in CN4

Fig. 5.2 Table describing the pin and pad assignments of the PWM controller

The settings for the PWM outputs can be altered using the SETUP command in iDev. The

SETUP command is similar on how it was used in Chapter 1.5 where a system setup is

created. It contains a Setup Header and Setup Body.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (PWM)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

PWM Setup parameters

Parameter Expected Values Definition

active
123

 enable PWM1,PWM2, and PW3 and synchronise
them

N  disable all PWM controllers (default)

active1 Y or N  enable (Y) or disable (N) PWM1 output (default = N)

active2 Y or N  enable (Y) or disable (N) PWM2 output (default = N)

active3 Y or N  enable (Y) or disable (N) PWM3 output (default = N)

pol1 H or L
 set the polarity to High (H) or Low (L) on first phase

of PWM1 (default = L)

pol2 H or L
 set the polarity to High (H) or Low (L) on first phase

of PWM2 (default = L)

pol3 H or L
 set the polarity to High (H) or Low (L) on first phase

of PWM3 (default = L)

cycle1
1µs(1MHz) to
5000µs(200Hz)

 set the duration of each cycle in microseconds for
PWM1 (default = 1)

cycle2
1µs(1MHz) to
5000µs(200Hz)

 set the duration of each cycle in microseconds for
PWM2 (default = 1)

cycle3
1µs(1MHz) to
5000µs(200Hz)

 set the duration of each cycle in microseconds for
PWM3 (default = 1)

duty1 1% to 99%

 set the duty cycle (see Chapter 10 for definition)
value of first phase as a percentage for PWM1
(default = 1)

 duty cycle values less than 1 are forced to 1 and
values greater than 99 are forced to 99 to prevent a
DC condition

2012 iDev Programming Guide Itron

Austin Barlis

215

duty2 1% to 99%

 set the duty cycle value of first phase as a
percentage for PWM2 (default = 1)

 first phase as a percentage for PWM2

 duty cycle values less than 1 are forced to 1 and
values greater than 99 are forced to 99 prevent a DC
condition

duty3 1% to 99%

 set the duty cycle value of first phase as a
percentage for PWM3 (default = 1)

 first phase as a percentage for PWM3

 duty cycle values less than 1 are forced to 1 and
values greater than 99 are forced to 99 prevent a DC
condition

delay 0µs to 5000µs

 set the offset/delay between the first phase of
PWM1 and PWM2 and first phase of PWM2 and
PWM3 in microseconds, for visualisation look at Fig
5.4 (default = 0)

Fig. 5.3 Table defining the PWM controller’s setup parameters

The cycle parameter it not the frequency of the cycle but the duration hence the expected

value is in µs and not in Hz. The duty parameter is the ratio between the on and off states in

one cycle. The diagram below describes how each parameter corresponds to each PWM

cycle.

Fig. 5.4 Diagram to show the relationship of the delay, duty and cycle parameters for PWM1,

PWM2 and PWM3

2012 iDev Programming Guide Itron

Austin Barlis

216

Fig. 5.5 Example code showing how PWM settings are configured using the SETUP command

The structure of the SETUP command is similar to the STYLE command in iDev. Specific setup

parameter’s value can be changed or updated using the LOAD command dot operator,

similar on how specific style parameters are updated.

LOAD command format to update/change specific setup parameters:

LOAD(Interface.Parameter, New Parameter Value);

Fig. 4.66 Example code demonstrating how the LOAD command with the dot operator is used

to update setup parameters for PWM

There is an example code named PWM Demonstration (link here) that uses all the PWM

controllers. A slide bar is used to control the duty cycle and arrows are used to change the

frequency of each cycle. The example code uses a combination of iDev commands to

implement the changes in the PWM controllers. The CALC command is used to convert the

duration of the cycle to frequency.

//FILENAME: TU480a.mnu

SETUP(PWM) //

{

active1 = Y; //

active2 = Y; //

pol1 = H; //

pol2 = H; //

cycle1 = 300; //

cycle2 = 300; //

duty1 = 25; //

duty2 = 50; //

}

//FILENAME: TU480a.mnu

FUNC(updpwm1func) //

{

LOAD(PWM.cycle1,25; //

LOAD(PWM.duty1,76; //

LOAD(PWM.pol,"L"; //

}

2012 iDev Programming Guide Itron

Austin Barlis

217

5.2. ADC
An ADC (Analogue to Digital Converter) is a device in which a signal that is continuously

varying is sampled and converted to a digital form e.g. a device producing analogue voltage

levels is converted to a digital number that is proportional to the scale of the voltage being

measured. The Itron SMART TFT module has 2 built-in ADC ICs (Integrated Circuit) which are

capable of converting an input voltage range of 0V to 3V DC. The input signal is sampled at

1000 Hz (1000 samples per second). The highest resolution of the ADC is at 10 bit i.e. digital

range produced is 0 to 1024.

Fig 5.7 Diagram to show pin assignments of the ADC in CN4 of the TFT module with the

jumper link highlighted

The jumper link highlighted in red is used to set the voltage output levels on pin 4 in

connector 4 (CN4) to either 5V or 3.3V. This applies to all the module sizes with the similar

configuration in the diagram but some TFT versions that do not have this jumper link have

the voltage level at pin 4 in connector 4(CN4) fixed at 5V.

3/5V

GND

CN4

Select

5V

3V

AN2

AN1

1

2 1 4

3

2

3

2012 iDev Programming Guide Itron

Austin Barlis

218

ADC (CN4) Pin Assignment Definition

Pin Number
Pin
Assignment

Definition Input/Output

1 AN1
ADC1 with input voltage range 0V to 3V DC max
with the reference voltage filtered from 3.3V DC

Input

2 AN2
ADC2 with input voltage range 0V to 3V DC max
with the reference voltage filtered from 3.3V DC

Input

3 GND Common Ground Input/Output

4 3/5V 3.3V (Output) or 5V (Input/Output) power IntputOutput

Jumper Link (Highlighted in RED) for Digital I/O in CN4

Pad Number Pad Assignment Definition Link

1 5V 5V Select
Solder to Select (pad 2) for 5V input/output at
pin 4 in CN4

2 Select Select N/A

3 3V 3.3V Select
Solder to Select (pad 2) for 3.3V output at pin
4 in CN4

Fig 5.8 Table describing the pin assignments of the ADC in CN4

Fig. 5.9 Diagram showing a typical connection for the ADC inputs

This diagram is a general representation on how to connect devices to the ADC lines of the

TFT module. Some connections may vary and the values also depend on the device’s input

impedance. The settings for the ADC outputs can be altered using the SETUP command in

iDev. The SETUP contains a Setup Header and Setup Body.

2012 iDev Programming Guide Itron

Austin Barlis

219

SETUP command format for any interface used in iDev:

Setup Header

SETUP (ADC)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

ADC setup parameters

Parameter Expected Values Definition

active

12  enable ADC1 and ADC2

1  enable ADC1 and disable ADC2

2  enable ADC2 and disable ADC1

N  disable ADC1 and ADC2 (default)

calib1
any non-zero
floating point value

 set the value used for calibration and scaling of the
digital value produced for ADC1 (default = 1)

 value produced is 1023 × calib1 value = new
maximum digital range e.g. 1023 × 0.2 = 204.6

 new value used is 204, value is rounded down

calib2
any non-zero
floating point value

 set the value used for calibration and scaling of the
digital value produced for ADC2 (default = 1)

 value produced is 1023 × calib2 value = new
maximum digital range e.g. 1023 × 0.2 = 204.6

 new value used is 204, value is rounded down

avg1 1 to 1000

 set the number of samples read and averaged for
ADC1, this is not the sampling rate

 1ms × avg1 value = average samples taken (default
= 16)

avg2 1 to 1000

 set the number of samples read and averaged for
ADC2, this is not the sampling rate

 1ms × avg2 value = average samples taken (default
= 16)

Fig. 5.10 Table defining the ADC setup parameters

Fig. 5.11 Example code showing how ADC settings are configured using the SETUP command

The structure of the SETUP command is similar to the STYLE command in iDev. Specific setup

parameter’s value can be changed or updated using the LOAD command dot operator,

similar on how specific style parameters are updated.

//FILENAME: TU480a.mnu

SETUP(ADC) //

{

active = 12; //

calib1 = 0.4; //

calib2 = 0.85; //

avg1 = 150; //

avg2 = 300; //

}

2012 iDev Programming Guide Itron

Austin Barlis

220

LOAD command format to update/change specific setup parameters:

LOAD(Interface.Parameter, New Parameter Value);

Fig. 5.12 Example code demonstrating how the LOAD command with the dot operator is used

to update setup parameters for ADC

The ADC1 input line is used in a graph project named ’25 Samples/Second ADC1 Graph

Project’ (link here) that maps the input voltage to a range of 0 to 3.2V. The digitised value of

voltage produced is used to trace points in a voltage against time graph. The current value at

different points is also calculated and displayed. The graph colour can be changed by

touching the 3 colour boxes in the corner.

5.3. PIEZO
The user can attach a piezo sounder with integrated oscillator or similar low ripple device to

provide an audible output or drive an LED indicator. The piezo line in CN2 is connected to a

30V FET switching to 0V with maximum 200mA.

Fig. 5.13 Diagram to show pin assignments for the Piezo output in CN2

//FILENAME: TU480a.mnu

FUNC(updadc1func) //

{

LOAD(ADC.active,2; //

LOAD(ADC.calib1,2.5; //

LOAD(ADC.avg1,500; //

}

5V

2

CN2

GND /PZ

1 3

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/ADCTraceCv2&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

221

Piezo (CN2) Pin Assignment Definition

Pin Number Pin Assignment Definition Input/Output

1 5V
5V power, preferred pin to power the
TFT module

Input/Output

2 /PZ (Active Low)
the negative terminal of the device
(buzzer) should be connected to this pin

Output

3 GND Common Ground Input/Output

Fig. 5.14 Table describing the pin assignments of the Piezo output in CN2

Fig. 5.15 Diagram showing a typical connection for the Piezo output

The negative terminal of the device (buzzer) should be connected to the TFT module and the

positive terminal to a supply from 5V to 24V DC. Using the LOAD command and the reserved

interface word BUZZ controls the Piezo output of the TFT module.

LOAD command to turn the Piezo output ON:

LOAD(BUZZ, ON/OFF);

LOAD command to turn the Piezo output to a specified duration value (in ms) or a value in

variable:

LOAD(BUZZ, Duration Value/Variable);

2012 iDev Programming Guide Itron

Austin Barlis

222

Fig. 5.16 Example code demonstrating how the Piezo output is manipulated

6. REAL TIME SUPPORT (RTC AND RTA)

6.1. REAL TIME CLOCK (RTC)
The RTC requires a battery to be fitted to the read of the module or a 3V DC supply applied

via a connector fitted to the rear of the PCB. The RTC is a special type of data that is used to

handle time. The STYLE command is used to control the different attributes for the RTC. The

other data style parameters are the same; refer to Chapter 3.1.1 for better guidance. The

default format used is 14 Sep 2012 09:50:04 which can be modified to suit the application.

The values for the RTC are changed and manipulated using the LOAD command.

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

RTC format available in iDev

Format style parameter
expected values

Definition

d
RTC format for day: day of month with
leading zeros = 01-31 (default = disabled)

j
RTC format for day: day of month without
leading zeros = 1-31

S
RTC format for day: ordinal suffix for day of
month = st, nd, rd, th

D
RTC format for day: short textual
representation of the day in three letters =
Mon-Sun

L
RTC format for day: full textual
representation of the day = Monday-Sunday

N
RTC format for day: ISO-8601 numeric
representation of the day = 1(Monday),
2(Tuesday)… 7(Sunday)

F
RTC format for month: full textual
representation of month = January-December

//FILENAME: TU480a.mnu

FUNC(buzzfunc) //

{

LOAD(BUZZ,500); //

WAIT(1000); //

LOAD(BUZZ,OFF); //

}

2012 iDev Programming Guide Itron

Austin Barlis

223

m
RTC format for month: numeric
representation of month with leading zeros =
01-12

M
RTC format for month: short textual
representation of month with three letters =
Jan-Dec

n
RTC format for month: numeric
representation of month without leading
zeros = 1-12

Y
RTC format for year: full numeric
representation of year with 4 digits = 1900-
2099

y
RTC format for year: two digit representation
of year = 00-99

a
RTC format for time: lowercase ante
meridiem and post meridiem = am, pm

A
RTC format for time: uppercase ante
meridiem and post meridiem = AM, PM

g
RTC format for time: 12-hour format of hour
without leading zeros = 1-12

G
RTC format for time: 24-hour format of hour
without leading zeros = 0-23

h
RTC format for time: 12-hour format of hour
with leading zeros = 01-12

H
RTC format for time: 24-hour format of hour
with leading zeros = 00-23

i
RTC format for time: format of minutes with
leading zeros = 00-59

s RTC format for time: format of zeros = 00-59

Fig. 5.17 Table describing different RTC formats that can be used in the STYLE command

The format of RTC is normally used as a combination of different time attributes. The

attributes omitted such as the day of the week doesn’t affect what is displayed on the

screen.

Format examples

Format Displayed as

"d M Y H :i:s" 14 Sep 2012 9:50:06

"d/m/y" 14/09/12

"jS F Y g:ia" 14th September 2010 9:50am

Fig. 5.18 Example of different format parameter values for RTC

LOAD command to ‘read’ the current RTC :

LOAD(Variable, RTC);

LOAD command format to ‘set’ RTC using 24-hour time with fixed format:

LOAD(RTC, "YYYY:MM:DD:hh:mm:ss");

2012 iDev Programming Guide Itron

Austin Barlis

224

Format for the LOAD command to ‘set’ RTC

Parameter Expected Values Definition

YYYY 1900 to 2099 set the year

MM 01 to 12 set the month

DD 01 to 31 set the day of month

hh 00 to 23 set the hours

mm 00 to 59 set the minutes

ss 00 to 59 set the seconds

Fig. 5.19 Table describing the parameters to set RTC using LOAD command

There are predefined-variables in iDev that can be used to ‘read’ but not ‘set’ current

attributes of the RTC. The value of these variables can be passed into a text variable to be

used.

Built-in RTC variables Definition

RTCYEARS numeric variable containing year (1900-2099) which can be
tested or loaded into a text

RTCMONTHS numeric variable containing months (1-12) which can be tested
or loaded into a text

RTCWEEKDAY numeric variable containing day of the week (1=Monday-
7=Sunday) which can be tested or loaded into a text

RTCDAYS numeric variable containing days (1-31) which can be tested or
loaded into a text

RTCHOURS numeric variable containing hours (0-23) which can be tested
or loaded into a text

RTCMINS numeric variable containing year (0-59) which can be tested or
loaded into a text

RTCSECS numeric variable containing year (0-59) which can be tested or
loaded into a text

Fig. 5.20 Table describing the pre-defined variables for different RTC attributes

A really basic example that used the RTC in iDev is created. The screen shot below shows

what should be expected when the example code is uploaded on the TFT module.

Fig 5.21 Screen shot of the TFT module when the code in Fig 5.22 is uploaded

2012 iDev Programming Guide Itron

Austin Barlis

225

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

VAR command format for text/RTC variable:

VAR(Variable name, "Starting text/RTC value", Variable Style);

LOAD command format to ‘set’ RTC using 24-hour time with fixed format:

LOAD(RTC, "YYYY:MM:DD:hh:mm:ss");

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body Contents

{

POSN command format:

POSN(x coordinate, y coordinate);

TEXT command format:

TEXT(Text component name, "Text component", Text Style);

LOOP command format:

Loop Header

LOOP(Loop name, Loop duration)

Loop Body

{

LOAD command to ‘read’ the current RTC:

LOAD(Variable/Interface Name, RTC);

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

}

}

SHOW command format:

SHOW(Page name or page component name);

2012 iDev Programming Guide Itron

Austin Barlis

226

Fig. 5.22 Example code demonstrating how RTC is used in iDev

The example code is a basic project that displays the current time and date. The starting RTC

value is set in the code using the LOAD command. The developer can use a variable defined

to display page that allows the user to change the current stored time and date (RTC). This

method would only work provided that the user has stated variables named yearvar,

monthcvar, hourvar, minvar, secvar in their code. The user can change the value stored in

these variables by the use of ‘plus or minus buttons’ and a SAVE ‘button’ would use this

LOAD command. There is a fully functional clock example project named ‘Analogue Clock

Project’ (link here) that uses the RTC in iDev properly. The user can change and set the

current time and also set an alarm.

LOAD command using variables to allow user to change RTC stored:

LOAD(RTC, yearvar,":",monthvar, ":",dayvar, ":",hourvar, ":",minvar, ":"secvar);

//FILENAME TU480a.mnu

STYLE(myRTCst,Data) //

{

type = text; //

length = 32; //

format = "jS F Y g:i:sa"; //

}

STYLE(homepgst,Page) //

{

back = white; //

}

STYLE(Ascii32txst,Text) //

{

font = Ascii32; //

col = red; //

maxRows = 1; //

maxLen = 32; //

}

VAR(myRTCvar,"",myRTCst); //

LOAD(RTC,"2012:09:12:10:21:52"); //

PAGE(homepg,homepgst) //

{

POSN(240,130); //

TEXT(mytime,myRTCvar,Ascii32txst); //

LOOP(updatetimelp,FOREVER) //

{

LOAD(myRTCvar,RTC); //

TEXT(mytime,myRTCvar);; //

}

}

SHOW(homepg);

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/AnClockC&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

227

6.2. REAL TIME CLOCK ALARM (RTA)
The RTA is used to set the duration, time or time and date of the alarm. The RTA can be

configured using the same format to ‘set’ RTC. The RTA does not support the years

parameter and is ignored when setting the alarm. An alarm can be set every 20 seconds at

17:45 every day or on the 15th March at 12:52 each year.

LOAD command to ‘read’ the current RTA:

LOAD(Variable, RTA);

LOAD command format to ‘set’ RTA using 24-hour time with fixed format:

LOAD(RTA,":MM:DD:hh:mm:ss");

Format for the LOAD command to ‘set’ RTA

Parameter Expected Values Definition

MM 01 to 12 set the month

DD 01 to 31 set the day of month

hh 00 to 23 set the hours

mm 00 to 59 set the minutes

ss 00 to 59 set the seconds

Fig. 5.20 Table describing the parameters to set RTA using LOAD command

Only the populated values are used to set the alarm, therefore alarms can be set every

minute, hour, hour:minute:second, day or month etc…

RTA manipulation example

Example LOAD commands for RTA Definition

LOAD(RTA,":5:26:14:7:03");
alarm is set every year on 26th of May at
14:07:03

LOAD(RTA,":::13:15:");
alarm is set to occur every day at
13:15:00

LOAD(RTA,":::",hourvar, ":",minvar, ":",secvar);

alarm is set to occur at
hourvar:minvar:secvar where
hourvar,minvar,secvar are variables that
stored values for the appropriate RTA
attributes

LOAD(RTA,":::::20");
alarm is set to occur every 20 seconds
past the minute

LOAD(RTA,0); clear the alarm stored

LOAD(RTA,":::::"); clear the alarm stored

LOAD(myalarm,RTA); ‘read’ the current alarm ‘set’ by the user

Fig. 5.21 Table demonstrating how RTA attributes are managed

Similar to the RTC, RTA also has built-in variables to be able to access certain attributes of

the RTA set. If the RTA has not been set then a value of ‘-1’ is returned.

2012 iDev Programming Guide Itron

Austin Barlis

228

Built-in RTA variables Definition

RTAMONTHS
numeric variable containing months (1-12)
which can be tested or loaded into a text

RTADAYS
numeric variable containing days (1-31) which
can be tested or loaded into a text

RTAHOURS
numeric variable containing hours (0-23)
which can be tested or loaded into a text

RTAMINS
numeric variable containing year (0-59) which
can be tested or loaded into a text

RTASECS
numeric variable containing year (0-59) which
can be tested or loaded into a text

Fig. 5.22 Table describing the pre-defined variables for different RTA attributes

It is possible to create an interrupt triggered by the alarm (RTA) set; the function set is called

at the alarm point.

INT command format to set an interrupt triggered by RTA:

INT(Interrupt Name, RTA, Function);

Since the day of the week is not supported in RTA then to set an alarm that triggers every

Thursday at 16:00, the example underneath can be used

Fig. 5.23 Code template to set an alarm triggered interrupt that occurs on the day set

There is a fully functional clock example project named ‘Analogue Clock Project’ (link here)

that uses the RTA in iDev properly. The user can change and set the current time and also set

an alarm.

//FILENAME: TU480a.mnu

INT(RTA,alarmfunc); //

LOAD(RTA,":::16:00:00"); //

FUNC(alarmfunc) //

{

IF(RTCWEEKDAY != 4? [EXIT(alarmfunc);]); //

//insert function contents to be processed for Thursday here..

}

http://www.noritake-itron.com/epages/log.asp?PCode=tft/ExampleProjects/AnClockC&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

229

7. FILE HANDLING FOR SD/MICRO SD CARD AND NAND – FILE (INCOMPLETE)
These commands support the file input/output operations, such as file open, file read, file write, file close,

file delete, etc. File and path names can be supplied either as immediate strings or via text variable

entities. More complicated file names can be constructed with concatenation of text, strings, pointers,

numbers etc... using the file MKFN command (see Chapter 7.8). Details on directory name and file name

construction can be found below in File and Directory Names.

Also the use of the file object, used to maintain an association with an open "stream" when reading from

and writing to the SD/SDHC card can be found below in File Object Variable. Data is read from and written

to files in multiples of bytes. The order the data bytes are read/written and the conversion of the bytes

(eg ASCII or binary) can be specified during setting up of the File Object Variable.

To allow the user to manage file error conditions without causing a system error, every FILE() command

returns an optional file result (fileRes) of the file action, eg "File Not Found" or "Access Denied". This is

returned as an error number or a configurable text string. See more about fileRes below.

FILE command format for general use:

FILE("Method",Parameter1, Parameter2, Parameter3…);

File command Methods Summary

Method Definition

APPEND Append data to specified ‘filename’

CLOSE close an open file on SD/micro SD card

COPY copy a specified file

DATE get the file time and date

DELETE delete a specified file

EXISTS check whether a file or directory exists

GETPOS get the current read/write position in the file

MKFN make a file name from a list of entities and strings

OPEN open a file on SD/micro SD card

READ read data from an open file on SD/micro SD card

READALL read data from specified ‘filename’

RENAME rename/move a file

SAVE save media (e.g. image) to a file

SETPOS set new/ read/write position in the file

SIZE get file size

WRITE write data to an open file on SD/micro SD card

WRITEALL write data to specified ‘filename’

Fig. 7.1 Different methods for the File command

2012 iDev Programming Guide Itron

Austin Barlis

230

7.1. APPEND
Append data to a file on SD/micro SD card. Opens a file and adds the data to the end of the

file then closes the file.

FILE command format for APPEND method:

FILE("APPEND",fileRes,fileObj,fileName,numWritten,numToWrite,data1,data2…);

FILE – APPEND parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

fileObj Entity name of file object variable
File object variable
See File Object Variable.

fileName
Immediate string or text variable of
file name.

File name.
See File and Directory Names

numWritten
Entity Name of numeric variable
(U32 etc).

Number of bytes written to file
(optional parameter)

numToWrite
Entity Name of numeric variable
(U32 etc).

Maximum number of bytes to write
to file
(optional parameter)

data
Immediate strings or numbers plus
entity names of text or numeric
variables or pointers to variables.

One of more sets of data to write to
file

Fig. 7.2 Table describing the FILE APPEND parameters

Fig. 7.3 Example code demonstrating how FILE APPEND is used

//FILENAME: TU480a.mnu

//inside a function

FILE("APPEND",txtResvar,Fileobjvar,"SDHC/logs/log.txt",,,"Hello",Countvar,"\\0a");

//

FILE("APPEND",,FileObjvar,FileNamevar,numbytesvar,1024,Datavar);

//

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names

2012 iDev Programming Guide Itron

Austin Barlis

231

7.2. CLOSE
Close an open file on SD/micro SD card.

FILE command format for CLOSE method:

FILE("CLOSE", fileRes, fileObj);

FILE – CLOSE parameters

Parameter Expected Value Definition

fileRes Entity Name of numeric variable (U8,
U16 etc), text variable, text.

Result of file operation. See File Result.
(optional parameter)

fileObj Entity name of file object variable File object variable. See File Object
Variable.

Fig. 7.4 Table describing the FILE CLOSE parameters

Fig. 7.5 Example code demonstrating how FILE CLOSE is used

7.3. COPY
Copy a file from SD/micro SD card to SD/micro SD card or between SD/micro SD card to

NAND

FILE command format for COPY method:

FILE("COPY", fileRes, dstfileName, srcFileName);

FILE command format for COPY method with overwrite enabled:

FILE("COPY+O", fileRes, dstfileName, srcFileName);

FILE – COPY parameters

Parameter Expected Value Definition

fileRes Entity Name of numeric variable
(U8, U16 etc), text variable, text.

Result of file operation. See File Result.
(optional parameter)

dstfileName Immediate string or text variable
of file name.

Destination file name. See File and
Directory Names.

srcFileName Immediate string or text variable
of file name.

Source file name. See File and Directory
Names.

Fig. 7.6 Table describing the FILE COPY parameters

Fig. 7.7 Example code demonstrating how FILE COPY is used

//FILENAME: TU480a.mnu

//inside a function

FILE("APPEND",txtResvar,Fileobjvar1); //

FILE("APPEND",,FileObjvar); //

//FILENAME: TU480a.mnu

//inside a function

FILE("COPY",txtResvar,"NAND/redleaf.bmp","SDHC/images/greenleaf.bmp");

//

FILE("COPY+O",,DstNamevar,SrcNamevar); //

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names

2012 iDev Programming Guide Itron

Austin Barlis

232

7.4. DATE
Get the file time and date of specified file in the SD/micro SD card or NAND.

FILE command format for DATE method:

FILE("DATE", fileRes, dstfileName, srcFileName);

FILE – DATE parameters

Parameter Expected Value Definition

fileRes Entity Name of numeric variable
(U8, U16 etc), text variable, text.

Result of file operation. See File Result.
(optional parameter)

dst Immediate string or text variable
of file name.

Destination file name. See File and
Directory Names.

format Immediate string or text variable
of format

Format of time and date. See Date
Format.
Default formatting will apply if not
supplied. (optional parameter)

fileName Immediate string or text variable
of file name.

File name See File and Directory
Names.

Fig. 7.8 Table describing the FILE DATE parameters

Fig. 7.9 Example code demonstrating how FILE DATE is used

7.5. DELETE
Delete a specified file in the SD/micro SD card or NAND.

FILE command format for DELETE method:

FILE("DELETE", fileRes, fileName);

FILE – DATE parameters

Parameter Expected Value Definition

fileRes Entity Name of numeric variable
(U8, U16 etc), text variable, text.

Result of file operation. See File Result.
(optional parameter)

fileName Immediate string or text variable
of file name.

File name See File and Directory
Names.

Fig. 7.10 Table describing the FILE DELETE parameters

Fig. 7.11 Example code demonstrating how FILE DELETE is used

//FILENAME: TU480a.mnu

//inside a function

FILE("DATE",Resvar, Txtvar,"d M Y H:i:s","NAND/greenleaf.bmp");

//

FILE("DATE",,Txtvar,"Y",FileNamevar); //

//FILENAME: TU480a.mnu

//inside a function

FILE("DELETE",Resvar,"SDHC/greenleaf.bmp"); //

FILE("DELETE",,FileNamevar); //

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/date_format.htm
http://itrontft.com/tft/Individual%20Functions/date_format.htm
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names

2012 iDev Programming Guide Itron

Austin Barlis

233

7.6. EXISTS
Check whether a file or directory exists in the SD/micro SD card or NAND.

FILE command format for EXISTS method:

FILE("EXISTS", fileRes, dst, fileName);

FILE – DATE parameters

Parameter Expected Value Definition

fileRes Entity Name of numeric variable
(U8, U16 etc), text variable, text.

Result of file operation. See File Result.
(optional parameter)

dst Entity Name of numeric variable
(U8, U16 etc), text variable, text.

Result of file existence check.
 0 = File/path does not exist.
 1 = File/path exists.
(optional parameter)

fileName Immediate string or text variable
of file/path name.

File name or path name. See File and
Directory Names.

Fig. 7.12 Table describing the FILE EXISTS parameters

Fig. 7.13 Example code demonstrating how FILE EXISTS is used

7.7. GETPOS
Get the current read/write position in the file opened on SD/micro SD card.

FILE command format for GETPOS method:

FILE("GETPOS", fileRes, fileObj, posn);

FILE – CLOSE parameters

Parameter Expected Value Definition

fileRes Entity Name of numeric variable (U8,
U16 etc), text variable, text.

Result of file operation. See File Result.
(optional parameter)

fileObj Entity name of file object variable File object variable. See File Object
Variable.

posn Entity Name of numeric variable (U8,
U16 etc), text variable, text.

Current absolute read/write position
from start of file.

Fig. 7.14 Table describing the FILE GETPOS parameters

Fig. 7.15 Example code demonstrating how FILE GETPOS is used

//FILENAME: TU480a.mnu

//inside a function

FILE("EXISTS",Resvar, Existsvar,"SDHC/music/jazzmusic.wav");

//

FILE("EXISTS",,Existsvar,FileNamevar); //

//FILENAME: TU480a.mnu

//inside a function

FILE("GETPOS",txtResvar,Fileobjvar2,posnVar); //

FILE("GETPOS",,Fileobjvar2,posnVar); //

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj

2012 iDev Programming Guide Itron

Austin Barlis

234

7.8. MKFN
Make a file name from a list of entities and strings specified.

FILE command format for APPEND method:

FILE("MKFN", fileRes, filename, data1, data2…);

FILE – MKFN parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

fileName
Immediate string or text variable of
file name.

Destination for concatenated file
name. See File and Directory Names.

data
Immediate strings or numbers plus
entity names of text or numeric
variables or pointers to variables.

One of more sets of data to write to
file

Fig. 7.16 Table describing the FILE MKFN parameters

Fig. 7.17 Example code demonstrating how FILE MKFN is used

7.9. OPEN
Open a file on SD/micro SD card for read/write/append/overwrite. If the file does not exist

then it is created. This FILE method is not supported in NAND. Use this command with a file

object variable and READ or WRITE and CLOSE, if the developer needs to read or modify the

file by small blocks of data. See Chapter 7.11, Chapter 7.17 and Chapter 7.1 for details of

using READALL, WRITEALL and APPEND file command methods.

FILE command format for OPEN for Read method from start of file (same as OPEN+R):

FILE("OPEN",fileRes,fileObj,fileName,fileName…);

FILE command format for OPEN for Read method from start of file (same as OPEN):

FILE("OPEN+R",fileRes,fileObj,fileName,fileName…);

FILE command format for OPEN for Write method to truncate file to zero length:

FILE("OPEN+W",fileRes,fileObj,fileName,fileName…);

FILE command format for OPEN for Append method to start at end of file:

FILE("OPEN+A",fileRes,fileObj,fileName,fileName…);

FILE command format for OPEN for Overwrite method to overwrite from start of file:

FILE("OPEN+O",fileRes,fileObj,fileName,fileName…);

//FILENAME: TU480a.mnu

//inside a function

FILE("MKFN",txtResvar,Filenamevar,"SDHC/",Dirvar,BaseNamevar,".txt");

//

FILE("MKFN",,Filenamevar,"Nand/file",Numvar,".bmp");

//

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names

2012 iDev Programming Guide Itron

Austin Barlis

235

FILE – OPEN parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

fileObj Entity name of file object variable
File object variable
See File Object Variable.

fileName
Immediate string or text variable of
file name.

File name to open. Can be a
concatenation of strings
See File and Directory Names

Fig. 7.18 Table describing the FILE OPEN parameters

Fig. 7.19 Example code demonstrating how FILE OPEN is used

7.10. READ
Read data from an open file on SD/micro SD card. The file must already be opened for read

access using FILE OPEN+R method.

FILE command format for READ method:

FILE("READ",fileRes,fileObj,numRead,numToRead,data);

FILE – READ parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

fileObj Entity name of file object variable.
File object variable. See File Object
Variable.

numRead
Entity Name of numeric variable
(U32 etc).

Number of bytes read from file.
(optional parameter)

numToRead
Entity Name of numeric variable
(U32 etc).

Maximum number of bytes to read
from file.
This parameter is optional. Either the
size of data is read or all remaining
bytes (whichever is smaller) if this
omitted.

data
Immediate strings or numbers plus
entity names of text or numeric
variables or pointers to variables.

Destination of bytes read in.

Fig. 7.20 Table describing the FILE READ parameters

Fig. 7.21 Example code demonstrating how FILE READ is used

//FILENAME: TU480a.mnu

//inside a function

FILE("OPEN+A",txtResvar,Fileobjvar,"SDHC/file.txt");

//

FILE("OPEN+A",txtResvar,Fileobjvar1,"SDHC/info/",BaseNamevar,".txt");

//

FILE("OPEN+W",,Fileobjvar3,FileNamevar);

//

//FILENAME: TU480a.mnu

//inside a function

FILE("READ",txtResvar,Fileobjvar1,,Datavar,1024");

//

FILE("MKFN",,Fileobjvar1,NumBytesvar,Datavar);

//

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj

2012 iDev Programming Guide Itron

Austin Barlis

236

7.11. READALL
Read data from specified ‘filename’ on SD/micro SD card or NAND. Opens file, reads data,

closes the file.

FILE command format for READALL method:

FILE("READALL",fileRes,fileObj,numRead,numToRead,data);

FILE – READALL parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

fileObj Entity name of file object variable.
File object variable. See File Object
Variable.

numRead
Entity Name of numeric variable
(U32 etc).

Number of bytes read from file.
(optional parameter)

numToRead
Entity Name of numeric variable
(U32 etc).

Maximum number of bytes to read
from file.
This parameter is optional. Either the
size of data is read or all remaining
bytes (whichever is smaller) if this
omitted.

data
Immediate strings or numbers plus
entity names of text or numeric
variables or pointers to variables.

Destination of bytes read in.

Fig. 7.21 Table describing the FILE READALL parameters

Fig. 7.22 Example code demonstrating how FILE READALL is used

//FILENAME: TU480a.mnu

//inside a function

FILE("READALL",txtResvar,Fileobjvar1,"SDHC/logs/log.txt",,Datavar,1024");

//

FILE("READALL",,Fileobjvar1,Filenamevar,NumBytesvar,Datavar);

//

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj

2012 iDev Programming Guide Itron

Austin Barlis

237

7.12. RENAME
Rename/move a file on SD/micro SD card or NAND from SD/micro SD card to SD/micro SD

card or between SD/micro SD card and NAND.

FILE command format for RENAME method:

FILE("RENAME", fileRes, dstfileName, srcFileName);

FILE command format for COPY method with overwrite enabled:

FILE("COPY+O", fileRes, dstfileName, srcFileName);

FILE – COPY parameters

Parameter Expected Value Definition

fileRes Entity Name of numeric variable
(U8, U16 etc), text variable, text.

Result of file operation. See File Result.
(optional parameter)

dstfileName Immediate string or text variable
of file name.

Destination file name. See File and
Directory Names.

srcFileName Immediate string or text variable
of file name.

Source file name. See File and Directory
Names.

Fig. 7.23 Table describing the FILE RENAME parameters

Fig. 7.24 Example code demonstrating how FILE RENAME is used

7.13. SAVE
Save media entity (image,audio,etc…) to a file on SD/micro SD card or NAND in the

appropriate file format.

FILE command format for SAVE method and sends an error report if file exists:

FILE("SAVE", fileRes, fileObj, fileName, numWritten,numToWrite,data);

FILE command format for SAVE+O method and overwrites fie if it already exists:

FILE("SAVE+O", fileRes, fileObj, fileName, numWritten,numToWrite,data);

FILE – SAVE parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

fileObj Entity name of file object variable.
File object variable. See File Object
Variable.

fileName
Immediate string or text variable of
file name.

Destination file name, required if file
not already open. SeeFile and
Directory Names.

numWritten
Entity Name of numeric variable
(U32 etc).

Number of bytes written to file.
This parameter is optional.

numToWrite
Entity Name of numeric variable
(U32 etc).

Maximum number of bytes to write
to file.
This parameter is optional.

//FILENAME: TU480a.mnu

//inside a function

FILE("RENAME",txtResvar,"NAND/redleaf.bmp","SDHC/images/greenleaf.bmp");

//

FILE("RENAME+O",,DstNamevar,SrcNamevar); //

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names

2012 iDev Programming Guide Itron

Austin Barlis

238

data
Immediate strings or numbers plus
entity names of text or numeric
variables or pointers to variables.

Destination of bytes read in.

Fig. 7.25 Table describing the FILE SAVE parameters

File extension types

File extension Definition

".tri" TFT raw image
TFT specific image file designed for fast loading time

".tra" TFT raw audio
TFT specific audio file designed for fast loading time

".trl" TFT raw layer
TFT specific layer file designed for fast loading time

".bmp" R8G8B8 bitmap
standard bitmap

Fig. 7.26 Table describing custom TFT specific files and bitmap

Fig. 7.27 Example code demonstrating how FILE SAVE is used

7.14. SETPOS
Set a new Read/Write position in the open file on SD/micro SD card.

FILE command format for SETPOS method to set new absolute read/write position (same as

SETPOS+A):

FILE("SETPOS", fileRes, fileObj, actPosn, reqPosn);

FILE command format for SETPOS+A method to set new absolute read/write position (same

as SETPOS):

FILE("SETPOS+A", fileRes, fileObj, actPosn, reqPosn);

FILE command format for SETPOS+R method to set new relative read/write position from

current position:

FILE("SETPOS+R", fileRes, fileObj, actPosn, reqPosn);

FILE – SETPOS parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

fileObj Entity name of file object variable.
File object variable. See File Object
Variable.

actPosn
Entity Name of numeric variable (U8,
U16 etc), text variable, text.

New read/write position after move -
absolute position from start of file.
This parameter is optional.

//FILENAME: TU480a.mnu

//inside a function

FILE("SAVE",txtResvar,Fileobjvar1,"NAND/tree.tri",,,ImgTreelib");

//

FILE("SAVE+O",,Fileobjvar1,,,,SrcNamevar);

//

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj

2012 iDev Programming Guide Itron

Austin Barlis

239

reqPosn
Immediate number or entity name of
numeric variable (U8, S8, U16, S16
etc).

Required read/write position. For
relative positions, negative numbers
move the position towards the start of
the file and positive numbers move
the position towards the end of the
file.

Fig. 7.25 Table describing the FILE SETPOS parameters

Fig. 7.27 Example code demonstrating how FILE SETPOS is used

7.15. SIZE
Get the size in bytes of specified file on SD/micro SD card or NAND.

FILE command format for SIZE method:

FILE("SIZE", fileRes, dst, fileName);

FILE – MKFN parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

dst
Entity Name of numeric variable (U8,
U16 etc), text variable, text

File size in bytes.

fileName
Immediate string or text variable of
file name.

File name. See File and Directory
Names.

Fig. 7.20 Table describing the FILE SIZE parameters

Fig. 7.21 Example code demonstrating how FILE SIZE is used

7.16. WRITE
Write data to an open file on SD/micro SD card. The file must already be opened for

write/append/overwrite access using OPEN+W, OPEN+A or OPEN+O.

FILE command format for WRITE method:

FILE("WRITE", fileRes, fileObj, numWritten, numToWrite, data1, data2…);

FILE – SAVE parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

//FILENAME: TU480a.mnu

//inside a function

FILE("SETPOS",txtResvar,Fileobjvar1,,Posnvar);

//

FILE("SETPOS+R",,Fileobjvar1, NewPosnvar,-10);

//

//FILENAME: TU480a.mnu

//inside a function

FILE("SIZE",txtResvar,Sizevar,"NAND/tree.bmp");

//

FILE("SIZE",,Sizevar,Filenamevar);

//

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res

2012 iDev Programming Guide Itron

Austin Barlis

240

fileObj Entity name of file object variable.
File object variable. See File Object
Variable.

numWritten
Entity Name of numeric variable
(U32 etc).

Number of bytes written to file.
This parameter is optional.

numToWrite
Entity Name of numeric variable
(U32 etc).

Maximum number of bytes to write
to file.
This parameter is optional.

data
Immediate strings or numbers plus
entity names of text or numeric
variables or pointers to variables.

One or more sets of data to write to
file.

Fig. 7.25 Table describing the FILE WRITE parameters

Fig. 7.27 Example code demonstrating how FILE WRITE is used

7.17. WRITEALL
Write data to an open file on SD/micro SD card. The file must already be opened for

write/append/overwrite access using OPEN+W, OPEN+A or OPEN+O.

FILE command format for WRITEALL method for files in SD/micro SD card:

FILE("WRITEALL", fileRes, fileObj, fileName, numWritten, numToWrite, data1, data2…);

FILE command format for WRITEALL method for files in NAND:

FILE("WRITEALL", fileRes, fileObj, fileName, numWritten, numToWrite, data);

FILE – WRITEALL parameters

Parameter Expected Value Definition

fileRes
Entity Name of numeric variable (U8,
U16 etc), text variable, text

Result of file operation
See File Result. (optional parameter)

fileObj Entity name of file object variable.
File object variable. See File Object
Variable.

fileName
Immediate string or text variable of
file name.

File name. See File and Directory
Names.

numWritten
Entity Name of numeric variable
(U32 etc).

Number of bytes written to file.
This parameter is optional.

numToWrite
Entity Name of numeric variable
(U32 etc).

Maximum number of bytes to write
to file.
This parameter is optional.

data
Immediate strings or numbers plus
entity names of text or numeric
variables or pointers to variables.

One or more sets of data to write to
file. NAND only supports one data
source.

Fig. 7.25 Table describing the FILE WRITEALL parameters

//FILENAME: TU480a.mnu

//inside a function

FILE("WRITE",txtResvar,Fileobjvar1,,,"Hello",Countvar,"\\0ae");

//

FILE("WRITE",,Fileobjvar1,NumBytesvar,1024,Datavar);

//

//FILENAME: TU480a.mnu

//inside a function

FILE("WRITEALL",txtResvar,Fileobjvar1,"SDHC/logs/log.txt",,,"Hello",Countvar,"\\0a");

//

FILE("WRITEALL",,Fileobjvar1,Filenamevar,NumBytesvar,1024,Datavar);

//

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_obj
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names
http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_names

2012 iDev Programming Guide Itron

Austin Barlis

241

Fig. 7.27 Example code demonstrating how FILE WRITEALL is used

7.18. FILE OBJECT VARIABLE
When a file is to opened, read or modified in stages and then closed, the file system

associates these actions with a "stream" that can identified in future actions by a file object.

The user must create a unique file object variable for each open file, though the variable can

be reused once a file has been closed.

You can create a file object variable with built in data styles FILEASC or FILEBIN.

You can also create your own file styles to alter the way data bytes are read/written. The

encode property determines how this data is managed. Refer to the data styles for the VAR()

command for the options. The predefined styles are:

The visibility property can be checked to see if the file object variable is currently assigned to

a file stream. An assigned variable is "visible", and unassigned variable is not "visible".

 CALC(res, varFileObj, "EVIS"); // res is 1 if varFileObj is in use.

7.19. FILE RESULT
Every FILE() command returns an optional file result (fileRes) of the file action. This allows

the user to manage file error conditions without causing a system error. System errors will

still occur for syntax errors and file system unrelated errors.

If fileRes is specified and is a numeric variable then an error number is returned. If fileRes is a

text entity or text variable entity then a text string for the error is returned. These strings are

preconfigured in text variable entities but can be changed by the user (eg to support

different languages). The following table summarises the file results.

Number Default Text
String

Entity
Name

Definition

0 "OK" FILERES0 OK. No error - the function succeeded

//FILENAME: TU480a.mnu

VAR(name,0,FILEASC); //name is a file object variable with data read/write as ASCII

VAR(name,0,FILEBIN); //name is a file object variable with data read/write as

 //binary (raw)

//FILENAME: TU480a.mnu

STYLE(FILEASC,data) //predefined style for FILE handling

{

type = file; //set type to file

encode = sr; //store a U8 var = 12 as two byes \\31\\32

}

STYLE(FILEBIN,data) //predefined style for FILE handling

{

type = file; //set type to file

encode = sd; //store a U8 var = 12 as one byte \\0C

}

http://itrontft.com/tft/Individual%20Functions/file_command.htm#file_res

2012 iDev Programming Guide Itron

Austin Barlis

242

1 "Disk I/O Layer
Error"

FILERES1 Disk Error. An unrecoverable error occurred in
the lower layer (disk I/O functions)

2 "Assertion Failed" FILERES2 Internal Error. Assertion failed

3 "Physical Drive
Error"

FILERES3 Not Ready. The physical drive cannot work

4 "File Not Found" FILERES4 File Not Found. Could not find the file

5 "Path Not Found" FILERES5 Path Not Found. Could not find the path

6 "Invalid Path
Name"

FILERES6 Filename Error. The path name format is
invalid

7 "Access Denied" FILERES7 Access Denied. Access denied due to
prohibited acce

8 "File Already
Exists"

FILERES8 File Exists. Any object that has the same name
is already existing

9 "Invalid File
Object"

FILERES9 Not Object. The file/directory object is invalid

10 "Write Protected" FILERES10 Write Protected. The physical drive is write
protected

11 "Invalid Drive" FILERES11 Invalid Drive. The logical drive number is invalid

12 "No Work Area" FILERES12 Not Enabled. The volume has no work area

13 "No FAT
Filesystem"

FILERES13 Not FAT. There is no valid FAT volume

14 "Make Filesystem
Failed"

FILERES14 MKFS Aborted. (Not supported)

15 "Timeout" FILERES15 Timeout. Could not get a grant to access the
volume within defined period

16 "Locked Out" FILERES16 Locked. The operation is rejected according to
the file sharing policy

17 "LFN Buffer
Overflow"

FILERES17 No Buffer. LFN working buffer could not be
allocated

18 "Too Many Open
Files"

FILERES18 Too Many Open Files. Number of open files > 5

19 "Invalid
Parameter"

FILERES19 Invalid Parameter. Given parameter is invalid

The error strings in FILERES0 to FILERES19 are variables of type TXT and have a maximum

length of 32 characters. They can be accessed and changed, as any other text variable. For

example:

 LOAD(FILERES4, "File was not found!"); // Change default "File Not Found" message

 TEXT(txtName, FILERES1);; // Display the Disk Error message on the screen

7.20. FILE AND DIRECTORY NAMES
SD/SDHC card

Supports long file names and unlimited directories with the following limitations:

 Maximum file name length is 256 characters,

 Maximum path name length is 8191 characters (including the SDHC/),

 Directory depth is unlimited but must fit in pathname length.

 The pound '£' symbol is not supported.

File names take the format:

 "SDHC/dir1/dir2/longFileName.ext"

2012 iDev Programming Guide Itron

Austin Barlis

243

NAND

Supports 8.3 file names only. Subdirectories are not supported in the NAND.

File names take the format:

 "NAND/filename.ext" for automatic placement in NAND (menu files in NANDMNU, others in

NANDLIB).

 "NANDLIB/filename.ext" for placement in NANDLIB area (where files are expected to be

rarely updated).

 "NANDMNU/filename.ext" for placement in NANDMNU area (where files are expected to

be frequently updated).

7.21. POTENTIAL FUTURE COMMANDS (NOT YET SUPPORTED)
These commands are not implemented but could be made available in future development

depending on customer demand.

FILE("DIR", [fileRes], dst, [format], pathName); // Formatted directory listing

FILE("APPENDLN", [fileRes], fileObj, fileName, [numWritten], data [, data [, ...]]); // Open,

Append Line, Close File (given fileName)

FILE("READLN", [fileRes], fileObj, [numRead], data [, numToRead]); // Read Line (given open

fileObj)

FILE("STATUS", [fileRes], fileName); // Get File Status

FILE("WRITELN", [fileRes], fileObj, [numWritten], data [, data [, ...]]); // Write Line (given

open fileObj)

FILE("WRITELN", [fileRes], fileObj, fileName, [numWritten], data [, data [, ...]]); // Open,

Write Line, Close File (given fileName)

7.22. FILE EXAMPLES
Example 1 - Simple Logging

 VAR(varFileObj, 0, FILEASC); // Create a file object variable

 FUNC(fncLogStatus)

 {

 FILE("APPEND", varRes, varFileObj, "SDHC/logs/log1.txt", varTime, ": ", varTemperature1,

"\\0a");

 IF(varRes != 0 ? fncReportError);

 }

Example 2 - Running a Log with Dated File Name

 VAR(varFileObj, 0, FILEASC); // Create a file object variable

 VAR(varDay, -1, S16); // Variable to store time last log was made

 VAR(varS32Tmp, 0, S32); // Variable for temporary storage

 VAR(varTxtRes, "", TXT); // Text variable for file result

 VAR(varTxtTmp, "", TXT); // Text variable for temporary storage

 FUNC(fncTimerExpired)

 {

2012 iDev Programming Guide Itron

Austin Barlis

244

 LOAD(varS32Tmp, RTCHOURS);

 IF(varDay != varS32Tmp ? fncOpenLogFile);

 FILE("WRITE", varTxtRes, varFileObj, varLogData1, varLogData2, "\\0a");

 IF(varTxtRes != "OK" ? [LOAD(RS2, "Log File Write Error: ", varTxtRes, "\\0d\\0a");]);

 }

 FUNC(fncOpenLogFile)

 {

 LOAD(varDay, RTCHOURS);

 CALC(varS32Tmp, varFileObj, "EVIS");

 IF(varS32Tmp == 1 ? [FILE("CLOSE", , varFileObj);]);

 FILE("MKFN", varTxtRes, varTxtTmp, "SDHC/logs/log", varDay, ".txt");

 IF(varTxtRes != "OK" ? [LOAD(RS2, "Log File Name Error: ", varTxtRes, "\\0d\\0a");]);

 FILE("OPEN+W", varTxtRes, varFileObj, varTxtTmp);

 IF(varTxtRes != "OK" ? [LOAD(RS2, "Log File Open Error: ", varTxtRes, "\\0d\\0a");]);

 }

 INT(intTmr0, TIMER0, fncTimerExpired); // Call function every minute

 LOAD(TIMER0, 60000, 0); // Create a 1 minute repetitive timer

2012 iDev Programming Guide Itron

Austin Barlis

245

8. FILE TRANSFER AND MEMORY

8.1. TRANSFER VIA MICRO SD CARD
The most convenient way to transfer an iDev project is via the micro SD card. The TFT

module supports micro SD cards with 1 GB capacity in FAT16 or FAT32 format and 4GB, 8GB,

16GB and 32GB capacity in FAT32 format. The reliability of the micro SD cards however

depends on the brand and the class. The sizes 1GB, 4GB and 8GB all work reliably regardless

of the micro SD card’s brand and class. When a firmware update is required then a 1GB

micro SD card must be used.

Fig. 8.1 Image of a 1GB micro SD card inserted into CN9 of the TFT module

Fig. 8.2 Picture of the front of a TFT module indicating the location of the micro SD card slot

2012 iDev Programming Guide Itron

Austin Barlis

246

All Itron SMART TFT module sizes and versions have a micro SD card slot located in CN9

which is on the top right hand corner (highlighted in red in Fig 8.1) of the TFT module. The

main menu file (TU320a.mnu, TU480a.mnu, TU640a.mnu or TU800a.mnu), other menu files,

images and other contents of an iDev project have to be copied in the root folder of the

micro SD card. The filenames of each file can have a maximum of 8 characters and it must

start with a letter or _ (8.3 file naming system). Also the file type should have three

characters e.g. image.bmp. The micro SD card slot in the TFT module works on a push (push

to insert)-pull (pull to remove) operation.

8.2. TRANSFER VIA SD CARD OR MICRO SD CARD ADAPTOR
An SD card or micro SD card adaptor can be connected to the TFT module on CN5 for all the

module sizes except 3.5”. The 3.5” TFT module does not have CN5. This option to transfer

files is useful in cases where the TFT module is placed in an enclosure that restricts access to

CN9, where the on-board micro SD card slot is located. The SD cards supported are 1GB

(FAT16/FAT32) and 4GB, 8GB, 16GB and 32GB in FAT 32 format. The reliability of the micro

SD cards however depends on the brand and the class. The sizes 1GB, 4GB and 8GB all work

reliably regardless of the micro SD card’s brand and class. When a firmware update is

required then a 1GB micro SD card must be used. The project files have to be transferred to

the root folder of the SD card which follows the 8.3 file naming system. Only one micro SD

card or SD card can be connected to the TFT module at a time i.e. it is not possible to connect

a micro SD card on CN9 and an SD card on CN5 to transfer project files at the same time. The

pin assignments for the SD card or micro SD card adaptor are exactly the same.

Fig. 8.3 Diagram to show pin assignments for the SD card/micro SD card adaptor in CN5

2

1

4

3 5

6 8

7 9

10

DA2 CDA

DA3 3V GND

DA0

DA1

GND

NU

CLK

CN5

2012 iDev Programming Guide Itron

Austin Barlis

247

Pin Number Pin Assignment Definition

1 DA2 Data Line 2

2 DA3 Data Line 3

3 CDA Serial Clock and Data

4 3V 3.3V power

5 CLK Clock

6 GND Common Ground

7 DA0 Data Line 0

8 DA1 Data Line 1

9 GND Common Ground

10
NU

Not Used (Do not
connect to anything)

Fig. 8.4 Table defining the pin assignments for SD card/micro SD card adaptor

Fig. 8.5 Diagram to display the pin connections of micro SD card adaptor and micro SD card

to CN5

A typical application to using this method uses an 800mm cable with connectors and cable

stubs to evaluate the SD card reading which proved successful when uploading the 88 files of

the demonstration software. It is recommended to use screened flat IDC cable of minimum

length with a ferrite collar.

2012 iDev Programming Guide Itron

Austin Barlis

248

Fig. 8.6 Image of the SD card adaptor connected via a long cable to CN5

8.3. TRANSFER TO NAND – FPROG & LOAD
The TFT module has 128 Mbyte NAND flash memory which is organised into 3 drives. The

first drive is a protected drive containing boot and operation files which use approximately 4

Mbyte and the other two drives for user accessible menu file drive and image/font/sound

files with variable partition to allow large image and fonts to occupy the maximum space of

124 Mbytes. The second and third drive contents can be cleared using the RESET(NAND)

command.

NAND BOOT AREA

NAND .MNU (variable partition)

NAND FONTS, IMAGES and SOUNDS (variable partition)

Fig. 8.7 Diagram displaying how the 3 drives in NAND flash is allocated

4 Mbyte

124 Mbyte

2012 iDev Programming Guide Itron

Austin Barlis

249

The files can be transferred to the NAND flash memory using the FPROG and FEND

command. These commands are used to program subsequent commands into internal flash

memory. If the existing files stored in NAND have to be replaced then the RESET(NAND)

command have to be used after the FPROG command, otherwise the files are added to

NAND. The subsequent LIB commands transfer images and files from NAND.

FPROG command to transfer:

FPROG;

LOAD(NAND, "SDHC/Filename1");

LOAD(NAND, "SDHC/Filename2");

LOAD(NAND, "SDHC/Filename3");

…

FEND;

If the files have been transferred to NAND, then the source parameter in all LIB commands

that add the files to the iDev project have to be changed to NAND e.g. change

LIB(img1,"SDHC/imgfile1.bmp"); to LIB(img1,"NAND/imgfile1.bmp");. When the module is

turned on, it checks for the correct TUXXXa.mnu file in NAND first then SDHC.

FPROG command to transfer:

FPROG;

LOAD(NAND, "SDHC/Filename1");

LOAD(NAND, "SDHC/Filename2");

LOAD(NAND, "SDHC/Filename3");

…

FEND;

RESET command format:

RESET(Name of iDev property)

INC command format:

For single files

INC("Source/Filename") ;

For multiple files

INC("Source/Filename1", "Source/Filename2", "Source/Filename3"…);

LIB command format for images:

LIB(Library image name, "Source/Filename");

LIB command format:

LIB(Library font/sound name, "Source/Filename");

2012 iDev Programming Guide Itron

Austin Barlis

250

Fig. 8.8 Example code demonstrating how FPROG is used in iDev

Once the project files are copied to the NAND then it is not necessary to keep the FPROG and

LOAD commands anymore. However, if the iDev project is getting updated and changed via

the micro SD card quite often then it is recommended to leave the FPROG and LOAD

commands so that the necessary files are changed appropriately. Another way of utilising the

FPROG command is by creating a separate menu file named FPROG.mnu and perform all the

FPROG and LOAD commands there to copy the project files to the NAND memory.

Fig. 8.9 Main menu file containing INC command to add the menu files to iDev project

Fig. 8.10 Fprog.mnu file demonstrating the use of FPROG and LOAD commands

//FILENAME: TU480a.mnu

FPROG; //start of FPROG command

RESET(NAND); //clear the contents of NAND memory

LOAD(NAND,"SDHC/TU480a.mnu"); //copy the TU480a.mnu file to NAND

LOAD(NAND,"SDHC/Funcs.mnu"); //copy the Funcs.mnu file to NAND

LOAD(NAND,"SDHC/Vars.mnu"); //copy the Vars.mnu file to NAND

LOAD(NAND,"SDHC/imgfile1.bmp"); //copy the imgfile1.bmp image to NAND

LOAD(NAND,"SDHC/imgfile3.bmp"); //copy the imgfile3.bmp image to NAND

LOAD(NAND,"SDHC/fntfile1.fnt"); //copy the fntfile1.fnt font to NAND

FEND; //end of FPROG command

INC("NAND/Funcs.mnu","NAND/Vars.mnu"); //add Func.mnu and Vars.mnu to iDev project

LIB(img1,"NAND/imgfile1.bmp"); //add imgfile1.bmp to library

LIB(img2,"SDHC/imgfile2.bmp"); //add imgfile2.bmp to library

LIB(img3,"NAND/imgfile3.bmp"); //add imgfile3.bmp to library

LIB(fnt1,"NAND/fntfile1.fnt"); //add fntfile1.bmp to library

LIB(fnt2,"SDHC/fntfile2.fnt"); //add fntfile2.bmp to library

//FILENAME: TU480a.mnu

INC("NAND/Fprog.mnu", "NAND/Funcs.mnu","NAND/Lib.mnu");

//add Fprog.mnu,Funcs.mnu,Lib,mnu to iDev project

//FILENAME: Fprog.mnu

FPROG; //start of FPROG command

RESET(NAND); //clear the contents of NAND memory

//menu files

LOAD(NAND,"SDHC/TU480a.mnu"); //copy the TU480a.mnu file to NAND

LOAD(NAND,"SDHC/Funcs.mnu"); //copy the Funcs.mnu file to NAND

LOAD(NAND,"SDHC/Lib.mnu"); //copy the Lib.mnu file to NAND

//image files

LOAD(NAND,"SDHC/imgfile1.bmp"); //copy the imgfile1.bmp image to NAND

LOAD(NAND,"SDHC/imgfile2.bmp"); //copy the imgfile2.bmp image to NAND

LOAD(NAND,"SDHC/imgfile3.bmp"); //copy the imgfile3.bmp image to NAND

LOAD(NAND,"SDHC/imgfile4.bmp"); //copy the imgfile4.bmp image to NAND

LOAD(NAND,"SDHC/imgfile5.bmp"); //copy the imgfile5.bmp image to NAND

LOAD(NAND,"SDHC/imgfile6.bmp"); //copy the imgfile6.bmp image to NAND

LOAD(NAND,"SDHC/imgfile7.bmp"); //copy the imgfile7.bmp image to NAND

LOAD(NAND,"SDHC/imgfile8.bmp"); //copy the imgfile8.bmp image to NAND

LOAD(NAND,"SDHC/imgfile9.bmp"); //copy the imgfile9.bmp image to NAND

//font files

LOAD(NAND,"SDHC/fntfile1.fnt"); //copy the fntfile1.fnt font to NAND

LOAD(NAND,"SDHC/fntfile2.fnt"); //copy the fntfile2.fnt font to NAND

LOAD(NAND,"SDHC/fntfile3.fnt"); //copy the fntfile3.fnt font to NAND

LOAD(NAND,"SDHC/fntfile4.fnt"); //copy the fntfile4.fnt font to NAND

LOAD(NAND,"SDHC/fntfile5.fnt"); //copy the fntfile5.fnt font to NAND

LOAD(NAND,"SDHC/fntfile6.fnt"); //copy the fntfile6.fnt font to NAND

FEND; //end of FPROG command

2012 iDev Programming Guide Itron

Austin Barlis

251

Fig. 8.11 Lib.mnu file adding all the project files into the project library using the LIB

command

It is possible to upload and write files to the NAND via a serial interface using the LOAD

command format. The correct interface is automatically selected i.e. the interface that

receives the LOAD command.

LOAD command format to upload and write files to NAND via serial interface:

LOAD("EXT/Filename?size=value&timedate=value&usechecksum=value&useack=value");

CR Filedata ChecksumH ChecksumL

Definition for LOAD command parameters

Parameter Expected Values Definition

size
value in bytes
(maximum is based on
available RAM space)

specify the number of bytes to be written and
uploaded (required parameter)

timedate
YYYY:MM:DD:HH:MM:SS
in ASCII format

specify the timestamp of the file being sent
(optional parameter)

usechecksum 1 or 0 enable checksum (optional parameter)

useack 1 or 0 enable acknowledge byte (optional parameter)

CR HEX code specify the carriage return

Filedata HEX code/ASCII/Binary list the contents of the file

ChecksumH HEX code specify the high nibble checksum value

ChecksumL HEX code specify the low nibble checksum value

Fig. 8.12 Table describing the parameters for the LOAD command to upload/write files to

NAND via serial interface

All the TFT module versions and sizes have a RAM capacity of 64 MB. If usechecksum =1, then

the TFT module will expect a 16 bit checksum added to the file data. The checksum uses the

sum of the checksum itself and the file data. The checksum is validated and the file only

written to NAND if correct when compared with the data received. On the other hand if

useack=1, then the module will send a single byte (on the same serial interface as the

command is being received on) to indicate success or failure of the upload/write operation.

The value returned is either \\06 (ACK) if successful or \\15 (NAK) if a failure occurred. Note

that the ACK is sent after the file is written to NAND therefore this can be used to inform the

host to send the next file if multiple files are being sent.

//FILENAME: Lib.mnu

//image files

LIB(img1,"NAND/imgfile1.bmp"); //add imgfile1.bmp to library

LIB(img2,"NAND/imgfile2.bmp"); //add imgfile2.bmp to library

LIB(img3,"NAND/imgfile3.bmp"); //add imgfile3.bmp to library

LIB(img4,"NAND/imgfile4.fnt"); //add imgfile4.bmp to library

LIB(img5,"NAND/imgfile5.fnt"); //add imgfile5.bmp to library

LIB(img6,"NAND/imgfile6.fnt"); //add imgfile6.bmp to library

LIB(img7,"NAND/imgfile7.fnt"); //add imgfile7.bmp to library

LIB(img8,"NAND/imgfile8.fnt"); //add imgfile8.bmp to library

LIB(img9,"NAND/imgfile9.fnt"); //add imgfile9.bmp to library

//font files

LIB(fnt1,"NAND/fntfile1.fnt"); //add fntfile1.bmp to library

LIB(fnt2,"NAND/fntfile2.fnt"); //add fntfile2.bmp to library

LIB(fnt3,"NAND/fntfile3.fnt"); //add fntfile3.bmp to library

LIB(fnt4,"NAND/fntfile4.fnt"); //add fntfile4.bmp to library

LIB(fnt5,"NAND/fntfile5.fnt"); //add fntfile5.bmp to library

LIB(fnt6,"NAND/fntfile6.fnt"); //add fntfile6.bmp to library

2012 iDev Programming Guide Itron

Austin Barlis

252

An example to upload and write a 5-byte file called test.txt containing the values for the

word ‘hello’ using checksum and acknowledge without the time stamp.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (Interface)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

LOAD command format to send files to NAND via serial interface:

LOAD("EXT/Filename?size=value&timedate=value&usechecksum=value&useack=value");

CR Filedata ChecksumH ChecksumL

Fig. 8.13 Example code to upload and write to NAND via serial interface using the LOAD

command

It is only possible to upload and write to NAND via serial interface in command mode (rxi = C;

txi = Y;). If the interface is in data mode (rxi = Y;), there will need to be provision in the user

protocol to allow a user command to be received that will change the interface setup using,

for example, LOAD(RS2.rxi, C); LOAD(RS2.txi, Y); in preparation for uploading the files.

//FILENAME: TU480a.mnu

SETUP(RS2) //specify the setup paramaters for RS2

{

baud = 9600; //set the baud rate to 9600

rxi = C; //set the receive interface as a command processing source

rxb = 9600; //set the receive buffer to 8500

txi = Y; //enable the transmit interface

txb = 9600; //set the transmit buffer to 8500

encode = s; //set the encoding of data to 8 bit ASCII

}

FUNC(writeNANDfunc)

{

LOAD("EXT/test.txt?size=5&usechecksum=1&useack=1"); //

0D hello 01 74 //

}

2012 iDev Programming Guide Itron

Austin Barlis

253

8.4. TRANSFER VIA USB
The connector CN8 allows users of USB enabled TFT modules to connect directly to a PC

using a standard mini-B cable which effectively powers the TFT module. The iDev project files

can be uploaded to the internal NAND memory or the micro SD card using terminal software

or the iDEVTFT development environment (link here).

Fig. 8.14 Image of the standard mini-B USB cable connector

USB Enabled TFT module versions

Module Size K611XXX K612XXX

3.5” v2 onwards v3 onwards

4.3” v4 onwards v7 onwards

5.7” v3 onwards v3 onwards

7” v5 onwards v6 onwards

Fig. 8.15 Table describing which TFT module versions have internal USB device fitted

Fig. 8.16 Picture of the front of a TFT module indicating the location of the internal USB

device

To transfer the project files from the PC to the internal NAND or micro SD card, the internal

USB driver have to be installed first (link here). When the TFT module is connected to a PC, a

http://www.noritake-itron.com/EPages/Log.asp?PCode=tft/iDevTFT/application/userload&PType=htm
http://itrontft.com/epages/log.asp?PCode=usb/tuxxusb1&Ptype=zip

2012 iDev Programming Guide Itron

Austin Barlis

254

pop-up message usually appears to indicate that a new device has been detected. Download

the USB .INF files applicable to the PC’s OS and install as directed. There are 2 .INF files in

TUXXUSB1.ZIP, extract the files and locate in an accessible directory on the PC. However, if

the pop-up message did not appear, the internal USB device driver can be installed through

the computer’s ‘Device Manager’. The current supported operating systems are Windows XP

and Windows 7 in 32/64-bit. If a TUXXXa.mnu is not present in the NAND or micro SD card,

the TFt module will enable USB communication automatically and driver installation can be

achieved using the appropriate .INF file. It is possible that administrator rights may be

required to install the USB driver. If there is a TUXXXa.mnu file in the NAND or micro SD card

then setup command have to be included to configure the USB device port. The TFT module

has an allocated pin connector for modules without an internal USB device fitted found in

CN5. All the TFT module sizes and versions have CN5 except the 3.5” size variant.

Fig. 8.17 Diagram to show pin assignments for the USB device port in CN5

USB port (CN5) Pin Assignment Definition

Pin Number Pin Assignment Definition

11 GND Common Ground

12 5V 5V power

13 DM Data Minus (Data -)

14 DP Data Plus (Data +)

15 NU
Not Used (Do not connect to anything, TFT
module is always the USB Slave device)

16 GND Common Ground

Fig. 8.18 Table describing the pin assignments of the USB port in CN5

Fig. 8.19 Diagram showing a typical connection between USB device port in CN5 and a

standard Type A and Mini-B USB connector

11

12

13

14

15

16

DM

5V

GND

DP GND

CN5

NU

2012 iDev Programming Guide Itron

Austin Barlis

255

This diagram is a general representation on how to connect standard USB Type A and Mini-B

devices to the USB port in CN5 of the TFT module. The pin number 15 on CN5 is not meant to

be connected to anything since the TFT module only operates in USB Slave mode. The

settings for the USB device port can be altered using the SETUP command in iDev. The SETUP

contains a Setup Header and Setup Body.

SETUP command format for any interface used in iDev:

Setup Header

SETUP (USB)

Setup Body

{

setup parameter1 = setup value1;

setup parameter2 = setup value2;

setup parameter3 = setup value3;

…

}

USB port setup parameters

Parameter Expected Values Definition

rxi

Y  enable the receive interface of the USB device port

N  disable the receive interface of the USB device port

C
 set the receive interface of the USB device port as a command

processing source(default)

D
 set the receive interface of the USB device port to receive

debugging data

proc

 termination characters can be specified to generate an interrupt to process a string
of data

 NB when sending commands (in command mode where rxi = C) to the module,
processing only occurs when \\0D or 0D hex is received e.g. TEXT(mytext, “hello
world”);; \\0D

all;  trigger on all received characters (default)

CRLF;
 trigger on a carriage return (CR) followed by line feed (LF = 0Dh

0A)

CR;
 trigger on carriage return (CR = 0dH) in command mode where

rxi = C;

LF;  trigger on line feed (LF = 0Ah)

NUL;  trigger on NUL (00h)

\\xx;  trigger on xxh (specify hex value)

"ABCD";  string in format defined by SYSTEM encode parameter

"\\xx\\xx";  string in format defined by SYSTEM encode parameter

procDel Y or N
 keep (Y) or remove (N) the termination character(s) before

processing (default = N)

procNum 0 to 16,780,000
 interrupt on n bytes received as alternative to proc and procDel

parameters (default = 0)

rxb 1 to 16,780,000
 specify the size of the receive buffer in bytes (default = 8192

bytes)

txi

Y  enable the transmit interface of the USB device port

N  disable the transmit interface of the USB device port (default)

C
 set the transmit interface of the USB device port as a command

processing source

2012 iDev Programming Guide Itron

Austin Barlis

256

E
 set the transmit interface of the USB device port to echo

command processing mode

txb 1 to 16,780,000
 specify the size of transmit buffer in bytes (default = 8192

bytes)

encode

 set the data encode mode to suit the purpose of the USB device port

s
 set data encode to 8 bit ASCII data

 codes 00-1F and 80-FF are converted to ASCII "\\00" - "\\1D"
and "\\80" - "\\FF" respectively (default)

sr
 set data encode to 8 bit ASCII raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as ASCII+ data

sd
 set data encode to 8 bit ASCII raw data bytes

 all bytes are processed as raw data

w
 set data encode to UNICODE – HEX Char x 4 = U16 (Most

significant hex-pair first) "ABCD" -> \\ABCD

wr
 set data encode to 8 bit UNICODE raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UNICODE+ data??

wd
 set data encode to 8 bit UNICODE raw data bytes

 all bytes are processed as raw data

m

 set data encode to 8 bit UTF8 raw text bytes

 codes 00-07 are processed as cursor commands

 codes 20-FF are processed as UTF8+ data??

mr
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

md
 set data encode to 8 bit UTF8 raw data bytes

 all bytes are processed as raw data

D8M
 set data encode to 8 bit data with U16’s, U32’s etc output most

significant byte first

 the same as data encode sd

D8L
 set data encode to 8 bit data with U16’s, U32’s etc output least

significant byte first

D16M

 set data encode to 16 bit data with bytes processed as most
significant byte first

 interrupt occurs after two bytes

 the same as data encode wd

D16L
 set data encode to 16 bit data with bytes processed as least

significant byte first

 interrupt occurs after two bytes

D32M

 set data encode to 32 bit data with bytes processed as most
significant byte first

 interrupt occurs after four bytes

 the same as data encode md

D32L
 set data encode to 32 bit data with bytes processed as least

significant byte first

 interrupt occurs after four bytes

sh or h8m or h8l  set data encode to ASCII – HEX Char x 2 = U8 e.g. "A8" -> \\A8

h16m
 set data encode to ASCII – HEX Char x 4 = U16 (most significant

hex-pair first) e.g. "ABCD" -> \\ABCD

h16l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) e.g. "ABCD" -> \\CDAB

h32m
 set data encode to ASCII – HEX Char x 4 = U32 (most significant

hex-pair first) "12345678" -> \\12345678

2012 iDev Programming Guide Itron

Austin Barlis

257

h32l
 set data encode to ASCII – HEX Char x 4 = U16 (least significant

hex-pair first) "12345678" -> \\78654321

Fig. 8.20 Table defining the USB port setup parameters

Fig. 8.21 Example code showing how USB port settings are configured using the SETUP

command

8.5. EEPROM
The EEPROM (Electrically Erasable Programmable Read-Only Memory) is a non-volatile

memory used to store data that is saved when the device is powered of e.g. variable values.

The internal EEPROM of all the TFT modules has 7.5 kbytes of user space and 500 bytes for

system parameters such as touch screen calibration and screen orientation. Data variables

can be created for storage in EEPROM with the use of VAR command (see Chapter 3.1.1). The

data stored in EEPROM are protected by checksums and in the event of corruption, the

default value assigned to the variable will be used. It may be necessary to clear the EEPROM

with the command RESET(EEPROM);. After this, the default parameters will be applied for

the touch screen calibration and orientation. The process of installing a new boot file

(boot.bin) also clears the EEPROM.

EEPROM SYSTEM

EEPROM USER VARIABLES

Fig. 8.7 Diagram displaying how internal EEPROM is allocated in iDev

//FILENAME: TU480a.mnu

SETUP(USB) //

{

rxi = C; //

rxb = 9600; //

txi = Y; //

txb = 9600; //

encode = s; //

}

500 byte

7.5 kbyte

2012 iDev Programming Guide Itron

Austin Barlis

258

9. EXAMPLE CODES (INCOMPLETE)
These projects are found folder called ‘Chapter 9 Example Code’

animation waterfalls

ball cursor

cursor animation

d-pad

d-pad bottles

PWM example

random graph

scroll bars

toggle switches

2012 iDev Programming Guide Itron

Austin Barlis

259

10. GLOSSARY
;

The command termination character ‘;’ is used to signify the end of a command in iDev.

Append

The process of adding or joining data to the end of a pre-existing data e.g. the data ‘world’ is

appended to ‘hello’, resulting in the data ‘helloworld’

Array

In iDev, an array refers to a series of variables all of which are the same type. Each ‘item’ in an array is

called an array element. It is possible to create 1D, 2D, 3D and 4D arrays in iDev. The diagram on the

next page represents how array elements are organised in a 4D array.

2012 iDev Programming Guide Itron

Austin Barlis

260

element (1)

element (1)

element (1)

element (1)

element (1)

element (1)

element (2)

element (0)

element (1)

element (2)

element (0)

element (0)

element (1)

element (0)

element (1)

element (2)

element (0)

element (0) element (1)

element (2)

element (0)

myarray

element (0)

element (1)

element (2)

element (0)

element (1)

element (0)

element (2)

element (0)

element (0)

element (2)

element (0)

element (1)

element (0)

element (0)

element (2)

element (0)

element (1)

1D (2) 2D (2) 3D (2) 4D (3)

2012 iDev Programming Guide Itron

Austin Barlis

261

Asynchronous communication

The process of data transmission between devices that uses separate clock signals (independent

transmit and receive clocks). This method requires a start and stop bit to signify the byte timing of the

data. In iDev the AS1, AS2, DBG, RS232 and RS422/RS485 interfaces uses asynchronous

communication.

Baud rate

Baud rate refers to the amount of times per second a signal changes state or varies in an interface

channel, baud rate in iDev is calculated by this formula reg = ((clk freq/baud rate)+8)/16) where reg is

the real baud rate value that the module’s processor uses

Buffer

A buffer refers to a variable which is used to temporarily hold data before it is moved to its final

destination. For example, the buffer variable mybuff is used as a temporary storage for the result of

the CALC(mybuff,20,18,”++);. The contents of the buffer can then be loaded to another variable or its

final destination.

Clock signal

A signal that oscillates between a Logic HIGH and Logic LOW signal back and forth at a specific

frequency. The clock signal ensures that the data stream between devices is synchronised.

Concatenate

This is the process of joining multiple data or strings end to end. For example in iDev the string ‘I’,

‘am’, ‘strong’ are concatenated using the LOAD command to end up with ‘Iamstrong’.

Cycle

This term is used to describe the full signal from the rising edge (going HIGH), through time when the

value of clock is (HIGH), through the falling edge (going LOW), the time that the value is zero until the

start of the next rising edge.

Debounce

In electronic circuits pressing switches/buttons does not always provide a clean state switch. That is,

when the switch is pressed the contacts of the switch does not make a clean contact to change the

state but it ‘bounces’. This ‘bounce’ creates an indeterminate state of the switch where it can be

detected LOW when it’s actually HIGH and vice versa. However, the ‘debounce’ phenomenon can be

avoided in iDev.

DC signal

Refers to Direct Current signal which is either always positive or always negative but the magnitude

can vary in time. Most electronic devices (such as the Itron SMART TFT modules) normally require a

steady DC supply which is constant at one value.

2012 iDev Programming Guide Itron

Austin Barlis

262

Duplex

A type of communication operation whereby devices can act as transmitter and receiver at the same

time (transceiver). Duplex communication allows data flow in both directions, hence verification and

control of data reception/transmission is possible.

Duty cycle

The duty cycle is the proportion of the ‘on’ state to the ‘off’ state of the PWM signal. It is usually

represented in percentage. A low duty cycle corresponds to low power as the power is off for most of

the time and vice-versa

Floating point

A floating point is used to represent real numbers that requires significant accuracy. This allows values

to have more decimal points, thus providing more accuracy

Full-duplex

A device that can transmit and receive data at the same time is a Full-duplex device. The RS232 and

RS422 interface operate in Full-duplex mode.

Half-duplex

A device that can transmit and receive data but not at the same time is a Half-duplex device. The

RS485 interface operates in Half-duplex mode.

Handshaking

The term ‘handshaking’ in programming is used to describe the process of one device establishing a

successful connection with another device through a specific interface. This usually involves

connection verification, speed, acknowledging etc…

HEX code

HEX code or Hexadecimal code is a base 16 notational system for representing numbers. The digits

used are 0, 1, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,0, A, B, C, D, E and F. There 256 numbers that can be represented

using Hexadecimal. The diagram on the next page is a conversion table between Hex, Decimal, Binary

and Octal numbering systems.

2012 iDev Programming Guide Itron

Austin Barlis

263

2012 iDev Programming Guide Itron

Austin Barlis

264

Input impedance

The impedance ‘seen’ by any device connected to its inputs. This is the impedance measured across

the inputs.

Integer

An integer refers to a whole number (not a fraction) that can be positive or negative. Integer numbers

does not have decimal places unlike Floating Point numbers.

Interface

In programming, interface refers to the point that provides a two-way interaction between two

devices.

iDev components

The term iDev components is the term used to describe variables, pages, page components, loops,

functions, styles etc… that an iDev developer has ‘created’ in his/her code. The term ‘created’ means

that the developer has named it and its origin comes from the iDev developer. On the other hand,

things such as style parameters, setup parameters aren’t ‘created’ by the developer.

Logic level

Logic level is the current state that a digital signal can have. In digital circuits, there only two possible

logic level states are Logic HIGH and Logic LOW. In Binary, the digit 1 represents Logic HIGH and the

digit 0 for Logic LOW.

Non-volatile memory

This is a type of memory that keeps the data contents in storage after the power of the device is

turned off. An example of non-volatile memory is EEPROM.

Oscillator

An oscillator is a device that produces periodic fluctuations between two things based on changes in

energy. Devices such as computers and clocks use oscillators.

Page components

In iDev, page components refer to the things that can be ‘added’ to a page namely text component,

image component, draw component and key component.

Parity bit

The parity bit is used for error correction of data packets. It is a bit added to ensure that the number

of bits with the value ‘1’ in a set of bits is even or odd. A parity bit can be added in data packets sent

through RS232, RS422/RS485, AS1 and AS2 interfaces in iDev.

Pointer

Pointer is a certain variable type that is used to locate another variable. The use of pointers allows the

developer to perform data related operations quicker. In iDev, pointers can be used to point to other

pointers, iDev components and page components but in most cases pointers are used to direct to

another variable.

Pull low/ pull high

Sometimes in electronics, some circuit components are described to be pulled LOW or pulled HIGH.

Pull HIGH refers to the use of pull-up resistors to ensure that given no other input, a circuit assumes a

2012 iDev Programming Guide Itron

Austin Barlis

265

default HIGH value and vice-versa for Pull Low.

Ripple

A ripple is a small unwanted periodic variation of the DC output from a power supply. The ripple can

be caused by incomplete conversion of an AC signal to a DC signal within the power supply. An ideal

power supply has minimum ripple effects.

Source and sink currents

The source and sink currents describes the direction of current flow. The source current provides a

constant source of positive charge carriers (i.e. provides current) and the sink current absorbs the

constant flow of positive charge carriers (i.e. absorbs current).

Synchronous communication

The process of data communication where the clock signal between the transmitting device and

receiving device is shared. For example, a clock signal is set by the Master device in I2C

communication is the same one that the Slave device uses.

Volatile memory

Data stored in volatile memory storage are erased after the device is turned off. The RAM (random

access memory) of the TFT module is volatile memory, so anything stored currently in it is erased

after the module is powered off.

2012 iDev Programming Guide Itron

Austin Barlis

266

11. APPENDIX
References:

http://www.docstoc.com/docs/30167115/Conversion-Table---Decimal-Hexidecimal-Octol-Binary-

Conversion-Table---Decimal-Hexidecimal-Octol hexadecimal converter table

http://www.cplusplus.com/reference/clibrary/cstdio/printf/ c printf format parameters

http://www.cprogramming.com/tutorial/lesson2.html if statement

http://www.ad-net.com.tw/index.php?id=62 rs232 rs485

http://www.best-microcontroller-projects.com/i2c-tutorial.html i2c

http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html i2c

http://www.barrgroup.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation pwm

http://www.intel.com/support/motherboards/desktop/sb/CS-023466.htm usb mini-b image

http://en.wikipedia.org/wiki/Universal_Serial_Bus usb type a and mini b image

http://www.pcguide.com/intro/fun/clockClocks-c.html cycle, rise time fall time, clock signal image

12. ACCESSORIES (INCOMPLETE)

12.1. CANBUS ADAPTOR

12.2. CAPACITIVE TOUCH

12.3. ROTARY ENCODER

12.4. BATTERY CONNECTOR

12.5. EXTERNAL SOUNDCARD

http://www.docstoc.com/docs/30167115/Conversion-Table---Decimal-Hexidecimal-Octol-Binary-Conversion-Table---Decimal-Hexidecimal-Octol
http://www.docstoc.com/docs/30167115/Conversion-Table---Decimal-Hexidecimal-Octol-Binary-Conversion-Table---Decimal-Hexidecimal-Octol
http://www.cplusplus.com/reference/clibrary/cstdio/printf/
http://www.cprogramming.com/tutorial/lesson2.html
http://www.ad-net.com.tw/index.php?id=62
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.barrgroup.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation
http://www.intel.com/support/motherboards/desktop/sb/CS-023466.htm
http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://www.pcguide.com/intro/fun/clockClocks-c.html

2012 iDev Programming Guide Itron

Austin Barlis

267

13. COMMAND FORMAT ARCHIVE (INCOMPLETE)
INC COMMANDS

INC command format:

For single files

INC("Source/Filename") ;

For multiple files

INC("Source/Filename1", "Source/Filename2", "Source/Filename3"…);

LIB COMMANDS

LIB command format for images:

LIB(Library image name, "Source/Filename");

LIB command format for transparency:

LIB(Library image name, "Source/Filename?back=Colour in HEX");

LIB command format for rotation:

LIB(Library image name, "Source/Filename?rotate=0°, 90°, 180° or 270°");

LIB command format for scaling:

LIB(Library image name, "Source/Filename?scale=value");

LIB command format for multiple transformations:

LIB(Library image name, "Source/Filename?transformation1&transformation2..");

LIB command format for fonts and sounds:

LIB(Library font/sound name, "Source/Filename");

LIB command format for mapping fonts:

LIB(Library font name, "Source/Filename?start=HEX value to be mapped");

SETUP COMMANDS

SETUP command format:

Setup Header

SETUP(SYSTEM)

Setup Body

{

parameter1 = parameter value1;

parameter2 = parameter value2;

parameter3 = parameter value3;

…

}

RESET COMMANDS

RESET command format:

RESET(Name of iDev property)

PAGE COMMANDS

PAGE command format:

Page Header

PAGE(Page name, Page style)

Page Body

{

Page Components…

}

2012 iDev Programming Guide Itron

Austin Barlis

268

STYLE COMMANDS

STYLE command format:

Style Header

STYLE(Style name, Style type)

Style Body

{

style parameter 1 = style value 1;

style parameter 2 = style value 2;

style parameter 3 = style value 3;

...

}

STYLE command format inherit:

Style Header

STYLE(New Style name, Style name inherit)

Style Body

{

new style parameter 1 = new style value 1;

new style parameter 2 = new style value 2;

new style parameter 3 = new style value 3;

...

}

POSN COMMANDS

POSN command format:

To change cursor position

POSN(x coordinate, y coordinate);

To reposition cursor position based on previous cursor position

POSN(+ /- x coordinate,+ /- y coordinate);

For single Page/Page Component

POSN(x coordinate, y coordinate, Page/Page Component);

For multiple Page/Page Components

POSN(x coordinate, y coordinate, Page1/Page Component1, Page2/Page Component2…);

TEXT COMANDS

TEXT command format:

TEXT(Text component name, "Text component", Text Style);

TEXT command format with text data source from a variable:

TEXT(Text component name, Text variable, Text Style);

TEXT command format using text component and text cursor manipulation:

TEXT(Text component name, "\\HEX CodeText component", Text Style);

TEXT command format to update text component that has been declared before:

TEXT(Text component name, "New text component");;

TEXT command format to pass all array elements to text component:

TEXT(Text component, Array source name);

TEXT command format to pass all array elements in the specified 1
st

 dimension to text component:

TEXT(Text component, Array source name.1D);

TEXT command format to pass all array elements to text component:

TEXT(Text component, Array source name.1D.2D);

TEXT command format to pass array elements in the specified 3
rd

 dimension to text component:

2012 iDev Programming Guide Itron

Austin Barlis

269

TEXT(Text component, Array source name.1D.2D.3D);

TEXT command format to apply different data format to text component:

TEXT(Text Component,%Data format%Variable Source, Text Style);

TEXT command format to apply printf data format to text component:

TEXT(Text Component,%*Printf Data Format %Variable Source, Text Style);

Printf Data format:

FlagsWidth.PrecisionLengthSpecifier

IMG COMMANDS

IMG command format for image already stored in iDev Library:

IMG(Image component name, Library Image name, Image Style);

IMG command format for image stored in SDHC card:

IMG(Image component name, "Source/Filename", Image Style);

DRAW COMMANDS

DRAW command format:

DRAW(Draw component name, size/coordinate X, size/coordinate Y, Draw style);

KEY COMMANDS

KEY command format:

KEY(Key component name, Function name, X, Y, Key style);

KEY command format using inline commands:

KEY(Key component name, [Inline command1,Inline command2..], X, Y, Key style);

KEY command format for external key:

KEY(Key component name, Function name, KXX, KYY, Key style);

KEY command format using inline commands for external key:

KEY(Key component name, [Inline command1,Inline command2..], KXX, KYY, Key style);

SHOW COMMANDS

SHOW command format:

SHOW(Page name or page component name);

SHOW command format for multiple page components:

SHOW(Page name1/component name1,Page name2/component name2…);

HIDE COMMANDS

HIDE command format to disable interrupts:

HIDE(Interrupt name1, Interrupt name2…);

HIDE command format:

HIDE(Page name or page component name);

HIDE command format for multiple page components:

HIDE(Page name1/component name1,Page name2/component name2…);

HIDE command format to disable interrupts:

HIDE(Interrupt name1, Interrupt name2…);

DEL COMMANDS

DEL command format:

DEL(iDev component name);

DEL command format for multiple iDev components:

DEL(iDev component name1,iDev component name2…);

2012 iDev Programming Guide Itron

Austin Barlis

270

LOAD COMANDS

LOAD command format to update styles:

LOAD(Style name.Parameter,New Parameter Value);

LOAD command format to change stored text data:

LOAD(Destination variable name, Text data source);

LOAD command format to change stored text data from multiple sources:

LOAD(Destination variable name, Text data source1, Text data source2…);

LOAD command format to change stored integer/ float data:

LOAD(Destination variable name, Int/float data source);

LOAD command format to change stored integer/float data from multiple sources:

LOAD(Destination variable name, Int/float data source1, Int/float data source2…);

LOAD command format for using pointers:

LOAD(Pointer variable name>"Shared destination value", Destination Identifier);

LOAD command format to change single element in one-dimensional array:

LOAD(Array name.1D, New element value/variable);

LOAD command format to transfer single element to variable:

LOAD(Variable name, Array name.1D);

LOAD command format to change all elements with a single value in one-dimensional array:

LOAD(Array name, Single value);

LOAD command format to change multiple elements in one-dimensional array:

LOAD(Array name,1
st

 element value,2
nd

 element value, 3
rd

 element value…);

LOAD command format to pass array elements to serial interface/text variable or another array:

LOAD(Destination of array elements, Array source name);

LOAD command format when array elements come from serial interface (serial buffer):

LOAD(Array name, Serial interface source);

LOAD command format to change single element in two-dimensional array:

LOAD(Array name.1D.2D, New element value/variable);

LOAD command format to transfer single element to variable:

LOAD(Variable name, Array name.1D.2D);

LOAD command format to change multiple elements in 1
st

 dimension of a two-dimensional array:

LOAD(Array name.1D,1
st

 element value,2
nd

 element value,3
rd

 element value…);

LOAD command format to pass array elements in the specified 1
st

 dimension to serial interface/ text

variable or another array:

LOAD(Destination of array elements, Array source name.1D);

LOAD command format when all array elements come from serial interface (serial buffer):

LOAD(Array name, Serial interface source);

LOAD command format when 1
st

 dimension array elements come from serial interface (serial buffer):

LOAD(Array name.1D,Serial interface source);

LOAD command format to change single element in three-dimensional array:

LOAD(Array name.1D.2D.3D, New element value/variable);

LOAD command format to transfer single element to variable:

LOAD(Variable name, Array name.1D.2D.3D);

LOAD command format to change multiple elements in specified 2nd dimension of a three-

dimensional array:

LOAD(Array name.1D.2D,1
st

 element value,2
nd

 element value,3
rd

 element value…);

LOAD command format to pass array elements in the specified 2
nd

 dimension to serial interface/text

variable or another array:

LOAD(Destination of array elements, Array source name.1D.2D);

2012 iDev Programming Guide Itron

Austin Barlis

271

LOAD command format when all array elements come from serial interface (serial buffer):

LOAD(Array name, Serial interface source);

LOAD command format when 2
nd

 dimension array elements come from serial interface (serial buffer):

LOAD(Array name.1D.2D,Serial interface source);

LOAD command format to change single element in three-dimensional array:

LOAD(Array name.1D.2D.3D.4D, New element value/variable);

LOAD command format to transfer single element to variable:

LOAD(Variable name, Array name.1D.2D.3D.4D);

LOAD command format to change multiple elements in specified 3rd dimension of a three-

dimensional array:

LOAD(Array name.1D.2D.3D,1
st

 element value,2
nd

 element value…);

LOAD command format to pass array elements in the specified 3
rd

 dimension to serial interface/text

variable or another array:

LOAD(Destination of array elements, Array source name.1D.2D.3D);

LOAD command format when all array elements come from serial interface (serial buffer):

LOAD(Array name, Serial interface source);

LOAD command format when 3
rd

 dimension array elements come from serial interface (serial buffer):

LOAD(Array name.1D.2D.3D,Serial interface source);

LOAD command format to apply different data format to a destination (serial interface/variable):

LOAD(Destination,%Data format%Variable Source);

LOAD command format to apply printf data format to a destination (serial interface/variable):

LOAD(Destination,%*Printf Data Format%Variable Source);

Printf Data format:

FlagsWidth.PrecisionLengthSpecifier

LOAD command format to change value of a variable:

LOAD(Destination Variable, New Value/Variable);

LOAD command format to combine/concatenate values or contents of variables and pass the result to

a variable:

LOAD(Text Variable, "New Text"/Text Variable1, " New Text"/ Text Variable2…);

LOAD command format to send contents of a variable or a value through an interface:

LOAD(Interface, New Value/Variable);

LOAD command format to send combined/concatenated contents of a text variable or text data

through an interface:

LOAD(Interface, "New Text"/Text Variable1, "New Text"/ Text Variable2,…);

LOAD command format to use a previously defined page as a template for a new page that is created,

page refresh is needed to make changes visible:

LOAD(Destination Page, Previously Defined Page);;

LOAD command format to change specific setup parameters:

LOAD(Setup Name.Parameter, New Parameter Value);

LOAD command format to transfer files from SDHC to on-board NAND flash (used with FPROG –

Chapter 8.3):

LOAD(NAND, "SDHC/Filename");

LOAD command format to send data through a specified interface:

LOAD(Interface, Var/Array/"Data");

LOAD command format to send multiple data through a specified interface:

LOAD(Interface, Var1/Array1/"Data1", Var2/Array2/"Data2");

LOAD command format to receive data through a specified interface:

LOAD(Variable/Array, Interface);

LOAD command format to send data through I2C:

2012 iDev Programming Guide Itron

Austin Barlis

272

LOAD(I2C, Device Address, Read Bytes, Var/Array/"Data");

LOAD command format to send multiple data through I2C:

LOAD(I2C, Device Address, Read Bytes, Var1/Array1/"Data1", Var2/Array2/"Data2");

LOAD command format to receive data through I2C:

LOAD(Variable/Array, I2C);

LOAD command to control Digital Output, where XX is the I/O assignment, 0 (Logic LOW) and 1 (Logic

HIGH):

LOAD(KXX, 0/1);

LOAD command to store the Digital I/O state, where XX is the I/O assignment, value stored is either 0

(Logic LOW) and 1 (Logic HIGH):

LOAD(Variable/Arrray, KXX);

LOAD command to control Digital Output, where V is the 8-bit I/O variable :

LOAD(KV, \\HEX code);

LOAD command to store the Digital I/O state, where XX is the 8-bit I/O variable, value stored is in HEX

code:

LOAD(Variable/Arrray, KV);

LOAD command format to update/change specific setup parameters:

LOAD(Interface.Parameter, New Parameter Value);

LOAD command to turn the Piezo output ON:

LOAD(BUZZ, ON/OFF);

LOAD command to turn the Piezo output to a specified duration value (in ms) or a value in variable:

LOAD(BUZZ, Duration Value/Variable);

LOAD command to ‘read’ the current RTC :

LOAD(Variable, RTC);

LOAD command format to ‘set’ RTC using 24-hour time with fixed format:

LOAD(RTC, "YYYY:MM:DD:hh:mm:ss");

LOAD command using variables to allow user to change RTC stored:

LOAD(RTC, yearvar,":",monthvar, ":",dayvar, ":",hourvar, ":",minvar, ":"secvar);

LOAD command to ‘read’ the current RTA:

LOAD(Variable, RTA);

LOAD command format to ‘set’ RTA using 24-hour time with fixed format:

LOAD(RTA,":MM:DD:hh:mm:ss");

LOAD command format to upload and write files to NAND via serial interface:

LOAD("EXT/Filename?size=value&timedate=value&usechecksum=value&useack=value");

CR Filedata ChecksumH ChecksumL

RUN COMMANDS

RUN command format:

RUN(Function Name);

RUN command format with Inline Function:

RUN([Function contents]);

2012 iDev Programming Guide Itron

Austin Barlis

273

FUNC COMMANDS

FUNC command format:

Function Header

FUNC(Function Name)

Function Body

{

Function contents…

}

Inline Function command format :

In the function parameter of the iDev command

[Function contents]

LOOP COMMANDS

LOOP command format:

Loop Header

LOOP(Loop name, Loop duration)

Loop Body

{

Loop contents…

}

EXIT command format:

EXIT();

EXIT command format for a specific loop

EXIT(Loop name);

VAR COMMANDS

VAR command format:

VAR(Variable name, Starting value, Variable Style);

VAR command format for text variable:

VAR(Variable name, "Starting text value", Variable Style);

VAR command format for pointers:

VAR(Pointer variable name>"Shared destination value", Pointer type);

VAR command format for one-dimensional arrays:

VAR(Array name, Array initial values, Data type, Size1D);

VAR command format for two-dimensional arrays:

VAR(Array name, Array initial values, Data type, Size1D,Size2D);

VAR command format for three-dimensional arrays:

VAR(Array name, Array initial values, Data type, Size1D,Size2D,Size3D);

VAR command format for four-dimensional arrays:

VAR(Array name, Array initial values, Data type,Size1D,Size2D,Size3D,Size4D);

VAR command format to apply different data format to value stored:

VAR(Variable name,%Data format%Starting Value, Variable Style);

VAR command format to apply printf data format to value stored:

VAR(Variable name,%*Printf Data Format %Starting Value, Variable Style);

2012 iDev Programming Guide Itron

Austin Barlis

274

IF COMMANDS

IF command format to create if statements with just one action, note that a Operand1 can be a

variable and Operand2 can be a literal text string or numeric value but both Operands cannot be

literal text string or numeric value:

IF(Operand1 Operator Operand2?Function);

IF command format to create if statements with an else action, note that a Operand1 can be a

variable and Operand2 can be a variable, literal text string or numeric value but both Operands cannot

be literal text string or numeric value:

IF(Operand1 Operator Operand2?Function1:Function2);

CASE SELECT

Typical iDev Case Switch/Select method note that chkstr, input and runfnc are text variables, caseval

is a S8 integer variable that were predefined:

LOAD(chkstr, ",", input, ",");

CALC(caseval, ", 1AG, 2GQ, 3TE, 4PL, ", chkstr, "FIND");

IF(caseval < 0? case_default: [LOAD(runfnc, "case_", input); RUN(runfnc);]);

CALC COMMANDS

CALC command format for most arithmetic methods:

CALC(Destination Variable, Operand 1, Operand2, "Method");

CALC command format for most text string methods:

CALC(Destination Variable, Operand1, Operand2, Method);

CALC command format for most buffer handling methods:

CALC(Destination Variable, Operand 1, Operand2, Operand3, Method);

CALC command format for NAND directory listing:

CALC(Destination Variable, Operand1, Operand2, Operand3, "DIR");

CALC command format for MCHK iDev Checksums where Operand1 is the source of the buffer and

Operand2 is the type:

CALC(Destination Buffer, Operand1, Operand2, "MCHK");

This checksum copies the buffer in Operand1 to the destination buffer. If unsure what buffer means

then refer to the glossary located at end of this guide. This makes a checksum of the type specified in

Operand2 and append to the destination buffer.

CALC command format for TCHK iDev Checksums where Operand1 is the source of the buffer and

Operand2 is the type:

CALC(Result, Operand1, Operand2, "TCHK");

CALC command format for CRC16 in iDev:

CALC(Destination Variable, Operand1, Operand2, Operand3, "CRC16");

CALC command format for CRC32 in iDev:

CALC(Destination Variable, Operand1, Operand2, Operand3, "CRC32");

CALC command format for deducing text, draw and image component information:

CALC(Destination Variable, Operand1, "Method");

CALC command format for splitting data buffers:

CALC(Destination Pointer, Operand1, Operand2, "MSPLIT");

2012 iDev Programming Guide Itron

Austin Barlis

275

INT COMMANDS

INT command format to use as wrap-around interrupt for the runtime counter:

INT(Interrupt name, Runtime counter, Function to be called);

INT command format to setup timer interrupts, where x is the number of timer interrupt being used

(TIMER0-TIMER9):

INT(Timer Interrupt name, TIMERx, Function to be called);

INT command format to set up Interface interrupts in iDev:

INT(Interrupt Name, Interface Buffer, Function);

INT command format to set an interrupt triggered by RTA:

INT(Interrupt Name, RTA, Function);

WAIT COMMANDS

WAIT command format:

WAIT(Duration);

FPROG COMMANDS

FPROG command to transfer:

FPROG;

LOAD(NAND, "SDHC/Filename1");

LOAD(NAND, "SDHC/Filename2");

LOAD(NAND, "SDHC/Filename3");

…

FEND;

2012 iDev Programming Guide Itron

Austin Barlis

276

14. IMAGE FILES USED IN GUIDE
Files are found in a folder called ‘images used in example codes in iDev’

Chapter
Example code in Fig
number

Filename Image Description

2.3.2 2.8 image1.bmp sunset

2.3.3
2.9 image1.bmp sunset

2.12 image1.bmp sunset

2.3.5 2.16

image1.bmp sunset

image2.bmp green button

image3.bmp red button

2.3.6 2.18

greenbox.bmp green button

redbox.bmp red button

number1.bmp number 1 image

tick.bmp
tick image inside
green circle

2.3.9 2.24 sunset.bmp sunset

2.3.11 2.28
greenbox.bmp green button

redbox.bmp red button

2.3.12 2.32
togoff.bmp toggle on image

togon.bmp toggle off image

2.4

2.35
togoff.bmp toggle on image

togon.bmp toggle off image

2.36
togoff.bmp toggle on image

togon.bmp toggle off image

2.5.4 2.40 greenbox.bmp green button

3.5 3.60 Back.bmp
numpad image for
different cases

3.6.1 3.67 Backg.bmp
numpad image for
calculator

